This article describes novel conformationally ordered alpha/beta-hybrid peptides consisting of repeating l-proline-anthranilic acid building blocks. These oligomers adopt a compact, right-handed helical architecture determined by the intrinsic conformational preferences of the individual amino acid residues. The striking feature of these oligomers is their ability to display an unusual periodic pseudo beta-turn network of nine-membered hydrogen-bonded rings formed in the forward direction of the sequence by 1-->2 amino acid interactions both in solid-state and in solution. Conformational investigations of several of these oligomers by single-crystal X-ray diffraction, solution-state NMR, and ab initio MO theory suggest that the characteristic steric and dihedral angle restraints exerted by proline are essential for stabilizing the unusual pseudo beta-turn network found in these oligomers. Replacing proline by the conformationally flexible analogue alanine (Ala) or by the conformationally more constrained alpha-amino isobutyric acid (Aib) had an adverse effect on the stabilization of this structural architecture. These findings increase the potential to design novel secondary structure elements profiting from the steric and dihedral angle constraints of the amino acid constituents and help to augment the conformational space available for synthetic oligomer design with diverse backbone structures.
Phosphotungstic acid (PTA) immobilized onto imidazole functionalized fumed silica and was used as an efficient catalyst for epoxidation of a variety of olefins using aqueous H 2 O 2 as an oxidant. Negligible leaching of PTA under the reaction conditions employed indicates a strong interaction between PTA and imidazole. The immobilized catalysts could be separated and reused after the catalytic cycle. Evidence for the heterogenization of PTA on the imidazole functionalized fumed silica has been inferred from different spectroscopic techniques like IR, UV-vis, and NMR. Importantly, the nature of binding of PTA on the support has been studied in detail by solid state NMR spectroscopy using 15 N labeled imidazole support. It is clear from the NMR studies that the effective heterogenization of PTA is mainly due to imidazolium ion formation on the support by the acidic protons of PTA and the resultant ion pair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.