Detailed knowledge of the phase diagram and the nature of the competing magnetic and superconducting phases is imperative for a deeper understanding of the physics of iron-based superconductivity. Magnetism in the iron-based superconductors is usually a stripe-type spin-density-wave, which breaks the tetragonal symmetry of the lattice, and is known to compete strongly with superconductivity. Recently, it was found that in some systems an additional spin-density-wave transition occurs, which restores this tetragonal symmetry, however, its interaction with superconductivity remains unclear. Here, using thermodynamic measurements on Ba1−xKxFe2As2 single crystals, we show that the spin-density-wave phase of tetragonal symmetry competes much stronger with superconductivity than the stripe-type spin-density-wave phase, which results in a novel re-entrance of the latter at or slightly below the superconducting transition.
The coupling between superconductivity and othorhombic distortion is studied in vapor-grown FeSe single crystals using high-resolution thermal-expansion measurements. In contrast to the Ba122-based (Ba122) superconductors, we find that superconductivity does not reduce the orthorhombicity below Tc. Instead we find that superconductivity couples strongly to the in-plane area, which explains the large hydrostatic pressure effects. We discuss our results in light of the spinnematic scenario and argue that FeSe has many features quite different from the typical Fe-based superconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.