Recently, electrospun polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) scaffolds have been developed for tissue engineering applications. These materials have piezoelectric activity, wherein they can generate electric charge with minute mechanical deformations. Since the myocardium is an electroactive tissue, the unique feature of a piezoelectric scaffold is attractive for cardiovascular tissue engineering applications. In this study, we examined the cytocompatibility and function of pluripotent stem cell derived cardiovascular cells including mouse embryonic stem cell-derived cardiomyocytes (mES-CM) and endothelial cells (mES-EC) on PVDF-TrFE scaffolds. MES-CM and mES-EC adhered well to PVDF-TrFE and became highly aligned along the fibers. When cultured on scaffolds, mES-CM spontaneously contracted, exhibited well-registered sarcomeres and expressed classic cardiac specific markers such as myosin heavy chain, cardiac troponin T, and connexin43. Moreover, mES-CM cultured on PVDF-TrFE scaffolds responded to exogenous electrical pacing and exhibited intracellular calcium handling behavior similar to that of mES-CM cultured in 2D. Similar to cardiomyocytes, mES-EC also demonstrated high viability and maintained a mature phenotype through uptake of low-density lipoprotein and expression of classic endothelial cell markers including platelet endothelial cell adhesion molecule, endothelial nitric oxide synthase, and the arterial specific marker, Notch-1. This study demonstrates the feasibility of PVDF-TrFE scaffold as a candidate material for developing engineered cardiovascular tissues utilizing stem cell-derived cells. Biotechnol. Bioeng. 2016;113: 1577-1585. © 2015 Wiley Periodicals, Inc.
Contractile behavior of cardiomyocytes relies on directed signal propagation through the electroconductive networks that exist within the native myocardium. Due to their unique electrical properties, electroactive materials, such as graphene, have recently emerged as promising candidate materials for cardiac tissue engineering applications. In this work, the potential of three-dimensional (3D) nanofibrous graphene and poly(caprolactone) (PCL + G) composite scaffold for cardiac tissue engineering has been explored for the first time. The addition of graphene into PCL led to an increased volume conductivity of scaffolds with an even distribution of graphene particles throughout the matrix. Graphene particles provided local conductive sites within the PCL matrix, which enabled application of external electrical stimulation throughout the scaffold using a custom point stimulation device. When mouse embryonic stem cell derived cardiomyocytes (mES-CM) were seeded on PCL + G scaffolds, cells adhered well, contracted spontaneously, and exhibited classical cardiomyocyte phenotype confirming the biocompatibility of electroactive PCL + G scaffolds. Further functional characterization demonstrated that graphene especially affected Ca 2+ handling properties of mES-CM compared to that of cardiomyocytes cultured in 2D culture, highlighting the potential of PCL + G for in vitro cardiac tissue engineering.
Following myocardial infarction ( MI ), myocardial inflammation plays a crucial role in the pathogenesis of MI injury and macrophages are among the key cells activated during the initial phases of the host response regulating the healing process. While macrophages have emerged as attractive effectors in tissue injury and repair, the contribution of macrophages on cardiac cell function and survival is not fully understood due to complexity of the in vivo inflammatory microenvironment. Understanding the key cells involved and how they communicate with one another is of paramount importance for the development of effective clinical treatments. Here, novel in vitro myocardial inflammation models were developed to examine how both direct and indirect interactions with polarized macrophage subsets present in the post‐ MI microenvironment affect cardiomyocyte function. The indirect model using conditioned medium from polarized macrophage subsets allowed examination of the effects of macrophage‐derived factors on stem cell‐derived cardiomyocyte function for up to 3 days. The results from the indirect model demonstrated that pro‐inflammatory macrophage‐derived factors led to a significant downregulation of cardiac troponin T ( cTnT ) and sarcoplasmic/endoplasmic reticulum calcium ATP ase (Serca2) gene expression. It also demonstrated that inhibition of macrophage‐secreted matricellular protein, osteopontin ( OPN ), led to a significant decrease in cardiomyocyte store‐operated calcium entry ( SOCE ). In the direct model, stem cell‐derived cardiomyocytes were co‐cultured with polarized macrophage subsets for up to 3 days. It was demonstrated that anti‐inflammatory macrophages significantly increased cardiomyocyte Ca 2+ fractional release while macrophages independent of their subtypes led to significant downregulation of SOCE response in cardiomyocytes. This study describes simplified and controlled in vitro myocardial inflammation models, which allow examination of potential beneficial and deleterious effects of macrophages on cardiomyocytes and vise versa. This can lead to our improved understanding of the inflammatory microenvironment post‐ MI , otherwise difficult to directly investigate in vivo or by using currently available in vitro models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.