STUDY QUESTION Are there age-related differences in gene expression during the germinal vesicle (GV) to metaphase II (MII) stage transition in euploid human oocytes? SUMMARY ANSWER A decrease in mitochondrial-related transcripts from GV to MII oocytes was observed, with a much greater reduction in MII oocytes with advanced age. WHAT IS KNOWN ALREADY Early embryonic development is dependent on maternal transcripts accumulated and stored within the oocyte during oogenesis. Transcriptional activity of the oocyte, which dictates its ultimate developmental potential, may be influenced by age and explain the reduced competence of advanced maternal age (AMA) oocytes compared with the young maternal age (YMA). Gene expression has been studied in human and animal oocytes; however, RNA sequencing could provide further insights into the transcriptome profiling of GV and in vivo matured MII euploid oocytes of YMA and AMA patients. STUDY DESIGN, SIZE, DURATION Fifteen women treated for infertility in a single IVF unit agreed to participate in this study. Five GV and 5 MII oocytes from 6, 21–26 years old women (YMA cohort) and 5 GV and 6 MII oocytes from 6, 41–44 years old women (AMA cohort) undergoing IVF treatment were donated. The samples were collected within a time frame of 4 months. RNA was isolated and deep sequenced at the single-cell level. All donors provided either GV or MII oocytes. PARTICIPANTS/MATERIALS, SETTING, METHODS Cumulus dissection from donated oocytes was performed 38 h after hCG injection, denuded oocytes were inserted into lysis buffer supplemented with RNase inhibitor. The samples were stored at −80°C until further use. Isolated RNA from GV and MII oocytes underwent library preparation using an oligo deoxy-thymidine (dT) priming approach (SMART-Seq v4 Ultra Low Input RNA assay; Takara Bio, Japan) and Nextera XT DNA library preparation assay (Illumina, USA) followed by deep sequencing. Data processing, quality assessment and bioinformatics analysis were performed using source-software, mainly including FastQC, HISAT2, StringTie and edgeR, along with functional annotation analysis, while scploid R package was employed to determine the ploidy status. MAIN RESULTS AND THE ROLE OF CHANCE Following deep sequencing of single GV and MII oocytes in both YMA and AMA cohorts, several hundred transcripts were found to be expressed at significantly different levels. When YMA and AMA MII oocyte transcriptomes were compared, the most significant of these were related to mitochondrial structure and function, including biological processes, mitochondrial respiratory chain complex I assembly and mitochondrial translational termination (false discovery rate (FDR) 6.0E−10 to 1.2E−7). These results indicate a higher energy potential of the YMA MII cohort that is reduced with ageing. Other biological processes that were significantly higher in the YMA MII cohort included transcripts involved in the translation process (FDR 1.9E−2). Lack of these transcripts could lead to inappropriate protein synthesis prior to or upon fertilisation of the AMA MII oocytes. LARGE SCALE DATA The RNA sequencing data were deposited in the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo), under the accession number: GSE164371. LIMITATIONS, REASONS FOR CAUTION The relatively small sample size could be a reason for caution. However, the RNA sequencing results showed homogeneous clustering with low intra-group variation and five to six biological replicates derived from at least three different women per group minimised the potential impact of the sample size. WIDER IMPLICATIONS OF THE FINDINGS Understanding the effects of ageing on the oocyte transcriptome could highlight the mechanisms involved in GV to MII transition and identify biomarkers that characterise good MII oocyte quality. This knowledge has the potential to guide IVF regimes for AMA patients. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Medical Research Council (MRC Grant number MR/K020501/1).
A systematic review of the literature showed that trophectoderm biopsy could assist in the selection of healthy embryos for uterine transfer without affecting implantation rates. However, previous studies attempting to establish the relationship between trophectoderm gene expression profiles and implantation competency using either microarrays or RNA sequencing strategies, were not sufficiently optimized to handle the exceptionally low RNA inputs available from biopsied material. In this pilot study, we report that differential gene expression in human trophectoderm biopsies assayed by an ultra-sensitive next generation RNA sequencing strategy could predict blastocyst implantation competence. RNA expression profiles from isolated human trophectoderm cells were analysed with established clinical pregnancy being the primary endpoint. Following RNA sequencing, a total of 47 transcripts were found to be significantly differentially expressed between the trophectoderm cells from successfully implanted (competent) versus unsuccessful (incompetent) blastocysts. Of these, 36 transcripts were significantly down-regulated in the incompetent blastocysts, including Hydroxysteroid 17-Beta Dehydrogenase 1 (HSD17B1) and Cytochrome P450 Family 11 Subfamily A Member 1 (CYP11A1), while the remaining 11 transcripts were significantly up-regulated, including BCL2 Antagonist/Killer 1 (BAK1) and KH Domain Containing 1 Pseudogene 1 (KHDC1P1) of which the latter was always detected in the incompetent and absent in all competent blastocysts. Ontological analysis of differentially expressed RNAs revealed pathways involved in steroidogenic processes with high confidence. Novel differentially expressed transcripts were also noted by reference to a de novo sequence assembly. The selection of the blastocyst with the best potential to support full-term pregnancy following single embryo transfer could reduce the need for multiple treatment cycles and embryo transfers. The main limitation was the low sample size (N = 8). Despite this shortcoming, the pilot suggests that trophectoderm biopsy could assist with the selection of healthy embryos for embryo transfer. A larger cohort of samples is needed to confirm these findings.Abbreviations: AMA: advanced maternal age; ART: assisted reproductive technology; CP: clinical pregnancy; DE: differential expression; FDR: false discovery rate; IVF: in vitro fertilization; LD PCR: long distance PCR; qRT-PCR: quantitative real-time PCR; SET: single embryo transfer; TE: trophectoderm
Paternal contributions to the zygote are thought to extend beyond delivery of the genome and paternal RNAs have been linked to epigenetic transgenerational inheritance in different species. In addition, sperm-egg fusion activates several downstream processes that contribute to zygote formation, including PLC zeta-mediated egg activation and maternal RNA clearance. Since a third of the preimplantation developmental period in the mouse occurs prior to the first cleavage stage, there is ample time for paternal RNAs or their encoded proteins potentially to interact and participate in early zygotic activities. To investigate this possibility, a bespoke next-generation RNA sequencing pipeline was employed for the first time to characterise and compare transcripts obtained from isolated murine sperm, MII eggs and pre-cleavage stage zygotes. Gene network analysis was then employed to identify potential interactions between paternally and maternally derived factors during the murine egg-to-zygote transition involving RNA clearance, protein clearance and post-transcriptional regulation of gene expression. Our approach looked for factors in sperm, eggs and zygotes that could potentially interact co-operatively and synergistically during zygote formation. At least five sperm RNAs (, ,, and) met these requirements for a paternal contribution, which with complementary maternal co-factors suggest a wider potential for extra-genomic paternal involvement in the developing zygote.
This work was supported by the Italian Ministry of University (grant PRIN 2010-2012 to C.K.), Tuscan Regional Health Research Program ('Progetto Salute 2009') to G.F., the Spanish Ministry of Health (grant FIS-11/02254) and the European Union 'Reprotrain' Marie Curie Network (project number: 289880 to C.K.). The authors declare that no conflicting interests exist.
Highlights Trophectoderm transcriptome profiles are altered with maternal age Trophectoderm transcriptome profiles can delineate maternal reproductive biological age A genome-wide methodology reveals potential embryoendometrial communication Exosome-related expression that could mediate implantation success decreases with aging
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.