Our study suggests that the early cell death of vitiligo melanocytes is related to their increased sensitivity to oxidative stress, which may arise from complex processes of abnormal synthesis and processing of TRP-1 and its interaction with calnexin.
Abstract-High rates of fatty acid oxidation in the heart and subsequent inhibition of glucose oxidation contributes to the severity of myocardial ischemia. These adverse effects of fatty acids can be overcome by stimulating glucose oxidation, either directly or secondary to an inhibition of fatty acid oxidation. We recently demonstrated that trimetazidine stimulates glucose oxidation in the heart secondary to inhibition of fatty acid oxidation. This inhibition of fatty acid oxidation was attributed to an inhibition of mitochondrial long-chain 3-ketoacyl CoA thiolase (LC 3-KAT), an enzyme of fatty acid -oxidation. However, the accompanying Research Commentary of MacInnes et al suggests that trimetazidine does not inhibit cardiac LC 3-KAT. This discrepancy with our data can be attributed to the reversible competitive nature of trimetazidine inhibition of LC 3-KAT. In the presence of 2.5 mol/L 3-keto-hexadecanoyl CoA (KHCoA), trimetazidine resulted in a 50% inhibition of LC-3-KAT activity. However, the inhibition of LC 3-KAT could be completely reversed by increasing substrate (3-keto-hexadecanoyl CoA, KHCoA) concentrations to 15 mol/L even at high concentrations of trimetazidine (100 mol/L). The study of MacInnes et al was performed using concentrations of 3K-HCoA in excess of 16 mol/L, a concentration that would completely overcome 100 mol/L trimetazidine inhibition of LC 3-KAT. Therefore, the lack of inhibition of LC 3-KAT by trimetazidine in the MacInnes et al study can easily be explained by the high concentration of KHCoA substrate used in their experiments. In isolated working hearts perfused with high levels of fatty acids, we found that trimetazidine (100 mol/L) significantly improves functional recovery of hearts subjected to a 30-minute period of global no-flow ischemia. This occurred in the absence of changes in oxygen consumption resulting in an improved increase in cardiac efficiency. Combined with our previous studies, we conclude that trimetazidine inhibition of LC 3-KAT decreases fatty acid oxidation and stimulates glucose oxidation, resulting in an improvement in cardiac function and efficiency after ischemia. The full text of this article is available online at http://www.circresaha.org. (Circ Res. 2003;93:e33-e37.)Key Words: 3-ketoacyl coenzyme A thiolase Ⅲ glucose oxidation Ⅲ fatty acid oxidation Ⅲ ischemia Ⅲ trimetazidine H igh rates of fatty acid oxidation are an important contributor to myocardial ischemic injury. A combination of high levels of circulating fatty acids 1 and alterations in the subcellular control of fatty acid oxidation 2,3 can result in 80% to 100% of the mitochondrial oxidative metabolism during and after ischemia originating from fatty acid oxidation. 4 -6 Unfortunately, this occurs at the expense of glucose oxidation. An ischemic-induced acceleration of glycolysis combined with this decrease in glucose oxidation results in an imbalance between glycolysis and glucose oxidation. 6 -8 If glycolysis is not coupled to glucose oxidation, the metabolic by-products are lactate...
We have previously reported that oxygen free radical scavengers protect rat islet cells from damage by cytokines and we interpreted these findings as suggesting the involvement of oxygen free radicals but did not directly measure indices of free radical activity. In this study, we report on malondialdehyde, an end product of lipid peroxidation, in rat islets incubated with cytokines. The individual cytokines, interleukin 1 (1 U/ml), tumour necrosis factor (10(2) U/ml), and interferon gamma (10(2) U/ml) inhibited insulin release but did not increase islet malondialdehyde levels. Combination of these cytokines however, produced significant increases in islet malondialdehyde and this was accompanied by islet necrosis. Furthermore, an inhibitor of lipid peroxidation, U78518E, significantly decreased the cytokine-induced increase in islet malondialdehyde and protected islet Beta cells from destruction by the cytokine combination of interleukin 1, tumour necrosis factor and interferon gamma. These findings suggest that the cytotoxic action of cytokines on islet Beta cells may result from free radical production and lipid peroxidation in the islet cells.
Ultraviolet radiation (UVR) is one of the risk factors for skin cancer and the main inducer of melanin pigmentation, the major protective mechanism of mammalian skin against radiation damage. The melanin pigments, eumelanin and pheomelanin, are likely to be important in protection against UVR, but their precursors are generally considered as phototoxic. The available data suggest DNA damage as the mechanism of phototoxicity. However, the effect of melanin precursors on membrane damage through lipid peroxidation, another important and probably more relevant (from the point-of-view of the melanosomal confinement of these molecules) mechanism of phototoxicity, not known. As a model system for UVR-melanin-membrane interactions, we irradiated liposomes in the presence of eumelanin, pheomelanin and two of their major precursors, 5,6-dihydroxyindole (DHI) and 5-S-cysteinyldopa (SCD). The presence of the two melanin precursors substantially reduced the formation of lipid peroxidation products resulting from UVR exposure. The antioxidant activity of the melanin precursors was diminished under strong prooxidant conditions (presence of Fe3+). These results suggest that melanin precursors may have an important role in the protection of skin against the harmful effects of UVR including photocarcinogenesis.
In the liver, malonyl-CoA is central to many cellular processes, including both fatty acid biosynthesis and oxidation. Malonyl-CoA decarboxylase (MCD) is involved in the control of cellular malonyl-CoA levels, and functions to decarboxylate malonyl-CoA to acetyl-CoA. MCD may play an essential role in regulating energy utilization in the liver by regulating malonyl-CoA levels in response to various nutritional or pathological states. The purpose of the present study was to investigate the role of liver MCD in the regulation of fatty acid oxidation in situations where lipid metabolism is altered. A single MCD enzyme of molecular mass 50.7 kDa was purified from rat liver using a sequential column chromatography procedure and the cDNA was subsequently cloned and sequenced. The liver MCD cDNA was identical to rat pancreatic beta-cell MCD cDNA, and contained two potential translational start sites, producing proteins of 50.7 kDa and 54.7 kDa. Western blot analysis using polyclonal antibodies generated against rat liver MCD showed that the 50.7 kDa isoform of MCD is most abundant in heart and liver, and of relatively low abundance in skeletal muscle (despite elevated MCD transcript levels in skeletal muscle). Tissue distribution experiments demonstrated that the pancreas is the only rat tissue so far identified that contains both the 50.7 kDa and 54. 7 kDa isoforms of MCD. In addition, transfection of the full-length rat liver MCD cDNA into COS cells produced two isoforms of MCD. This indicated either that both initiating methionines are functionally active, generating two proteins, or that the 54.7 kDa isoform is the only MCD protein translated and removal of the putative mitochondrial targeting pre-sequence generates a protein of approx. 50.7 kDa in size. To address this, we transiently transfected a mutated MCD expression plasmid (second ATG to GCG) into COS-7 cells and performed Western blot analysis using our anti-MCD antibody. Western blot analysis revealed that two isoforms of MCD were still present, demonstrating that the second ATG may not be responsible for translation of the 50.7 kDa isoform of MCD. These data also suggest that the smaller isoform of MCD may originate from intracellular processing. To ascertain the functional role of the 50. 7 kDa isoform of rat liver MCD, we measured liver MCD activity and expression in rats subjected to conditions which are known to alter fatty acid metabolism. The activity of MCD was significantly elevated under conditions in which hepatic fatty acid oxidation is known to increase, such as streptozotocin-induced diabetes or following a 48 h fast. A 2-fold increase in expression was observed in the streptozotocin-diabetic rats compared with control rats. In addition, MCD activity was shown to be enhanced by alkaline phosphatase treatment, suggesting phosphorylation-related control of the enzyme. Taken together, our data demonstrate that rat liver expresses a 50.7 kDa form of MCD which does not originate from the second methionine of the cDNA sequence. This MCD is regulated ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.