Objective: Research suggests that Puerarin may protect against sepsis-induced myocardial damage. However, the mechanisms responsible for Puerarin’s cardioprotective effect remain largely unclear. In this study, our objective is to investigate the role of Puerarin-induced AMPK-mediated ferroptosis signaling in protecting myocardial injury.
Methods: 48 male Sprague-Dawley rats were randomly divided into four groups: control group, LPS group, LPS + Pue group, LPS + Pue + Era (Erastin, ferroptosis activator) group, or LPS + Pue + CC (compound C, AMPK inhibitor) group. During the experiment, cardiac systolic function indexes and myocardial histopathological changes were monitored. The serum levels of myocardial injury marker enzyme, inflammatory response related marker enzyme, and oxidative stress related-marker enzyme were measured with ELISA. Apoptotic cardiomyocytes, the iron content in myocardial tissue, apoptosis-related proteins, AMPK, and ferroptosis-related proteins were determined.
Results: Puerarin inhibited the myocardial injury induced by LPS. The cardioprotective effects of Puerarin decreased after adding ferroptosis-activating compound Erastin. The protein expression levels of GPX4 and ferritin were down-regulated, whereas ACSL4, TFR, and heart iron content were up-regulated in LPS + Pue + Era group compared with LPS+Pue group. A significant difference was identified between LPS + Pue + Era group and LPS + Pue group in P-AMPK and T-AMPK levels. Meanwhile, after providing CC, P-AMPK/T-AMPK was significantly reduced, the protein expression levels of GPX4 and ferritin were down-regulated. ACSL4, TFR, and the heart iron content were up-regulated in LPS + Pue + CC group compared to LPS + Pue group.
Conclusions: Puerarin protected against sepsis-induced myocardial injury, and AMPK-mediated ferroptosis signaling played a crucial role in its cardioprotective effect.
Ischemia-reperfusion injury (IRI) refers to a syndrome in which tissue damage is further aggravated and organ function further deteriorates when blood flow is restored after a period of tissue ischemia. Acute myocardial infarction, stress ulcer, pancreatitis, intestinal ischemia, intermittent claudication, acute tubular necrosis, postshock liver failure, and multisystem organ failure are all related to reperfusion injury. AMP-activated protein kinase (AMPK) has been identified in multiple catabolic and anabolic signaling pathways. The functions of AMPK during health and diseases are intriguing but still need further research. Except for its conventional roles as an intracellular energy switch, emerging evidence reveals the critical role of AMPK in IRI as an energy-sensing signal molecule by regulating metabolism, autophagy, oxidative stress, inflammation, and other progressions. At the same time, drugs based on AMPK for the treatment of IRI are constantly being researched and applied in clinics. In this review, we summarize the mechanisms underlying the effects of AMPK in IRI and describe the AMPK-targeting drugs in treatment, hoping to increase the understanding of AMPK in IRI and provide new insights into future clinical treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.