Apoptosis is strictly connected to the pathogenesis of many human diseases, including neoplastic, neurodegenerative or cardiovascular diseases. It is a highly programmed cell death which can be activated by various factors. Mitochondria play a key role in the apoptotic process; their damage, which involves permeabilization of the outer mitochondrial membrane, activates a series of events that lead to cell death. Of the two proposed signaling pathways of apoptosis, i.e. the 'extrinsic' and the 'intrinsic' pathway, the latter is assumed to initiate in mitochondria. Its activation involves release of cytochrome c and other pro-apoptotic factors from the mitochondrial intermembrane space. In the cytosol, cytochrome c exerts its pro-apoptotic action. It binds to the apoptosis protease activation factor (APAf-1) and forms a complex indicated as 'apoptosome'. The complex-induced activation of pro-caspase 9 initiates an enzymatic reaction cascade leading to the execution of apoptosis in cells. This review provides an overview of the key role played by mitochondria and cytochrome c in the activation of the apoptotic process.
In this paper we investigate the role played by each histidine in the amino acid sequence of yeast iso-1-cytochrome c (with the exception of H18, the residue axially coordinated to the heme iron) in determining the protein structure and stability. To this end, we have generated and characterized the double mutants H26Y/H33Y, H26Y/H39K and H33Y/H39K obtained from the C102T variant of the protein, which retain only one histidine side chain in the amino acid sequence. In particular, the H39K mutation inserts a lysine at position 39 as in the sequence of equine cytochrome c. The H26Y/H33Y/H39K triple mutant, which lacks all three histidines, was also produced and its spectroscopic properties are compared with those of the double mutants. The data highlight the critical role played by H26 in determining protein stability. Recombinant horse cytochrome c and the corresponding H26Y mutant were also generated and characterized. Since equine cytochrome c exhibits higher stability than the yeast protein, this provides a valuable opportunity to understand the role played by the invariant H26 residue in determining structure and stability.
The structural and redox properties of a non-covalent complex reconstituted upon mixing two non-contiguous fragments of horse cytochrome c, the residues 1-38 heme-containing N-fragment with the residues 57-104 C-fragment, have been investigated. With respect to native cyt c, the complex lacks a segment of 18 residues, corresponding, in the native protein, to an omega (Omega)-loop region. The fragment complex shows compact structure, native-like alpha-helix content but a less rigid atomic packing and reduced stability with respect to the native protein. Structural heterogeneity is observed at pH 7.0, involving formation of an axially misligated low-spin species and consequent partial displacement of Met80 from the sixth coordination position of the heme-iron. Spectroscopic data suggest that a lysine (located in the Met80-containing loop, namely Lys72, Lys73, or Lys79) replaces the methionine residue. The residues 1-38/57-104 fragment complex shows an unusual biphasic alkaline titration characterized by a low (p K(a1)=6.72) and a high p K(a)-associated state transition (p K(a2)=8.56); this behavior differs from that of native cyt c, which shows a monophasic alkaline transition (p K(a)=8.9). The data indicate that the 40s Omega-loop plays an important role in the stability of cyt c and in ensuring a correct alkaline conformational transition of the protein.
The European collaboration "ANCIENT CHARM" (http://ancient-charm.neutron-eu.net/ach/) aims to develop new non-destructive neutron techniques to image the internal composition of complex archaeological objects in order to answer various archaeological questions. Among these techniques, prompt gamma activation imaging (PGAI) and neutron tomography (NT) form a unique combination which can determine the 3D distribution of most elements in objects with a non-destructive procedure. A spatial resolution better than 2 mm has already been achieved in a moderately scattering matrix material
A neutron diffraction (ND) and neutron tomography (NT) study of laminated ancient bronzes was performed at the ISIS (Rutherford Appleton Laboratory, UK) neutron source and at the BENSC reactor (Hahn-Meitner Institut, Germany). The samples are part of an 8th century BC Etruscan collection discovered in the necropolises of Osteria-Poggio Mengarelli and Cavalupo in the Vulci area (Viterbo, Italy). The study allowed us to derive-in a totally non-destructive manner-information related to the main composition of the objects, possible presence of alterations and their nature, crusts and inclusions, as well as structure of the bulk. The presence of some components is linked to a variety of questions such as the correct determination of the historical and cultural timeframe, place and method of production, technologies adopted and conditions for restoration and preservation. Moreover, the data analysis of corrosion products provides information about the past environments and the physical/chemical events that transformed the objects into a partially corroded matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.