Heart failure and kidney disease share common pathophysiological pathways which can lead to mutual dysfunction, known as cardiorenal syndrome. In heart failure patients, renal impairment is related to hemodynamic and non-hemodynamic factors. Both decreased renal blood flow and renal venous congestion due to heart failure could lead to impaired renal function. Kidney disease and worsening renal function are independently associated with poor prognosis in heart failure patients, both in acute and chronic clinical settings. The aim of this review is to assess the role of renal imaging modalities in the evaluation and management of heart failure patients. Renal imaging techniques could complete laboratory data, as estimated glomerular filtration rate, exploring different pathophysiological factors involved in kidney disease and adding valuable information about renal structure and function. In particular, Doppler examination of arterial and venous hemodynamics is a feasible and non invasive technique, which has proven to be a reliable method for prognostic stratification in patients with cardiorenal syndrome. The renal resistance index, a measure related to renal hemodynamics, can be calculated from the Doppler evaluation of arterial flow. Moreover, the analysis of Doppler venous flow patterns can integrate information from the arterial study and evaluate renal congestion. Other imaging modalities are promising, but still confined to research purposes.
Galectin-3 and ST2 are emerging biomarkers involved in myocardial fibrosis. We evaluate the relevance of a multiparametric biomarker approach based on increased serum levels of NT-proBNP, galectin-3, and ST2 in stratifying the prognosis of chronic heart failure (CHF) outpatients. In 315 CHF outpatients in stable clinical condition clinical and echocardiographic evaluations were performed. Routine chemistry and serum levels of NT-proBNP, galectin-3, and ST2 were also assessed. During a 12 month follow-up, cardiovascular death, and/or heart failure (HF) occurred in 64 patients. The presence of NT-proBNP, galectin-3, and ST2 were higher than the recommended cutoffs and were all associated with events at univariate Cox regression analysis, as well as in a multivariate analysis including the three biomarkers. When a score based on the number of biomarkers above the recommended cut-offs was used (in a range of 0–3), it was associated with events both with respect to the univariate (HR 2.96, 95% CI 2.21–3.95, p < 0.001, C-index 0.78) and the multivariate (HR 1.52, 95% CI 1.06–2.17, p: 0.023, C-index 0.87) analyses, after correction for the variables of a reference model. Our results suggest that an easy prognostic approach based on the combination of three biomarkers, although with partially-overlapping pathophysiological mechanisms, is able to identify patients with the highest risk of heart failure progression.
Kidney disease is commonly found in heart failure (HF) patients. They share many risk factors and common pathophysiological pathways which often lead to mutual dysfunction. Both haemodynamic and non-haemodynamic mechanisms are involved in the development of renal impairment in heart failure patients. Moreover, the presence of a chronic kidney disease is a significant independent predictor of worse outcome in chronic as well as in acute decompensated HF. As a consequence, an accurate evaluation of renal function plays a key role in the management of HF patients. Serum creatinine levels and glomerular filtration rate (GFR) estimates are the corner stones of renal function evaluation in clinical practice. However, to overcome their limits, several emerging glomerular and tubular biomarkers have been proposed over the last years. Alongside the renal biomarkers, imaging techniques could complement the laboratory data exploring different pathophysiological pathways. In particular, Doppler evaluation of renal circulation is a highly feasible technique that can effectively identify HF patients prone to develop renal dysfunction and with a worse outcome. Finally, some classes of drugs currently used in heart failure treatment can affect renal function and their use can be influenced by the presence of chronic kidney disease.
Recently, great attention is paid to cardiovascular impact of non-insulin glucose-lowering drugs, particularly in terms of major cardiovascular events and risk of heart failure. In this regard, a surprising diversity among different molecules within the same pharmacological class has been noticed, yielding to an intra-class discrepancy which has no analogous in other cardiovascular fields. The aim of this paper is to review the literature, giving an insight of the heterogeneous effects among groups and within group shown by oral antidiabetic drugs, with a special concern to fragile patients, such as those with or at risk of heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.