Benzocycloheptenes constitute a common structural motif embedded in many natural products and biologically active compounds. Herein, we report their concise preparation from non‐activated polycyclic arenes using a two‐step sequence involving dearomative [4+2]‐cycloaddition with arenophile in combination with palladium‐catalyzed cyclopropanation, followed by cycloreversion‐initiated ring expansion. The described strategy provides a working alternative to the Buchner reaction, which is limited to monocyclic arenes. Overall, this methylene‐insertion molecular editing approach enables rapid and direct conversion of simple (hetero)arenes into a range of substituted (aza)benzocycloheptatrienes, which can undergo a myriad of downstream functionalizations.
We report a Pd-catalyzed ring-opening/arylation/cyclization
reaction
sequence between 2-aminothiazoles and aryl (pseudo)halides that provides
modular access to isocytosine analogues. The scope of the reaction
is broad with respect to both coupling partners and a robustness test
demonstrated the functional group tolerance of the methodology. Visual
kinetic analysis revealed that the product may inhibit catalyst turnover
for some substrates.
Benzocycloheptenes constitute a common structural motif embedded in many natural products and biologically active compounds. Herein, we report their concise preparation from non-activated polycyclic arenes using a two-step sequence involving dearomative [4 +2]-cycloaddition with arenophile in combination with palladium-catalyzed cyclopropanation, followed by cycloreversion-initiated ring expansion. The described strategy provides a working alternative to the Buchner reaction, which is limited to monocyclic arenes. Overall, this methylene-insertion molecular editing approach enables rapid and direct conversion of simple (hetero)arenes into a range of substituted (aza)benzocycloheptatrienes, which can undergo a myriad of downstream functionalizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.