The genetic basis of traits can shape and constrain how adaptation proceeds in nature; rapid adaptation can be facilitated by polygenic traits, whereas polygenic traits may restrict re-use of the same genes in adaptation (genetic convergence). The rapidly evolving life histories of guppies in response to predation risk provide an opportunity to test this proposition. Guppies adapted to high- (HP) and low-predation (LP) environments in northern Trinidad evolve rapidly and convergently among natural populations. This system has been studied extensively at the phenotypic level, but little is known about the underlying genetic architecture. Here, we use an F2 QTL design to examine the genetic basis of seven (five female, two male) guppy life history phenotypes. We use RAD-sequencing data (16,539 SNPs) from 370 male and 267 female F2 individuals. We perform linkage mapping, estimates of genome-wide and per-chromosome heritability (multi-locus associations), and QTL mapping (single-locus associations). Our results are consistent with architectures of many-loci of small effect for male age and size at maturity and female interbrood period. Male trait associations are clustered on specific chromosomes, but female interbrood period exhibits a weak genome-wide signal suggesting a potentially highly polygenic component. Offspring weight and female size at maturity are also associated with a single significant QTL each. These results suggest rapid phenotypic evolution of guppies may be facilitated by polygenic trait architectures, but these may restrict gene-reuse across populations, in agreement with an absence of strong signatures of genetic convergence from recent population genomic analyses of wild HP-LP guppies.
Colour polymorphism provides a tractable trait that can be harnessed to explore the evolution of sexual selection and sexual conflict. Male colour patterns of the Trinidadian guppy (Poecilia reticulata) are governed by both natural and sexual selection, and are typified by extreme pattern colour variation as a result of negative frequency dependent selection. Since guppy colour patterns are often inherited faithfully from fathers to sons, it has been historically presumed that colour genes are physically linked to sex determining loci as a supergene on the sex chromosome. Yet the actual identity and genomic location of the colour pattern genes has remained elusive. We phenotyped and genotyped four guppy Iso-Y lines, where colour was inherited along the patriline, but backcrossed into the stock population every 2 to 3 generations for 40 generations, thereby homogenising the genome at regions unrelated to colour. Using an unbiased phenotyping method to proportion colour pattern differences between and among the Iso-Y lines, we confirmed that the breeding design was successful in producing four distinct colour patterns. Our analysis of genome resequencing data of the four Iso-Y lines uncovered a surprising genetic architecture for colour pattern polymorphism. Genetic differentiation among Iso-Y lines was repeatedly associated with a large and diverse haplotype (~5Mb) on an autosome (LG1), not the sex chromosome (LG12). Moreover, the LG1 haplotype showed elevated linkage disequilibrium and exhibited evidence of sex-specific diversity when we examined whole-genome sequencing data of the natural source population. We hypothesise that colour pattern polymorphism is driven by Y-autosome epistasis, and conclude that predictions of sexual conflict should focus on incorporating the effects of epistasis in understanding complex adaptive architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.