One contribution of 11 to a theme issue 'Living light: optics, ecology and design principles of natural photonic structures'.The blue neck and breast feathers of the peacock are structurally coloured due to an intricate photonic crystal structure in the barbules consisting of a two-dimensionally ordered rectangular lattice of melanosomes (melanin rodlets) and air channels embedded in a keratin matrix. We here investigate the feather coloration by performing microspectrophotometry, imaging scatterometry and angle-dependent reflectance measurements. Using previously determined wavelength-dependent refractive indices of melanin and keratin, we interpret the spectral and spatial reflection characteristics by comparing the measured spectra to calculated spectra by effective-medium multilayer and full three-dimensional finite-difference time-domain modelling. Both modelling methods yield similar reflectance spectra indicating that simple multilayer modelling is adequate for a direct understanding of the brilliant coloration of peacock feathers.
The iridescent plumage of many birds is structurally colored due to an orderly arrangement of melanosomes in their feather barbules. Here, we investigated the blue- to purple-colored feathers of the European starling (Sturnus vulgaris) and the blue and green feathers of the Cape starling (Lamprotornis nitens). In both cases, the barbules contain essentially a single layer of melanosomes, but in S. vulgaris they are solid and rod-shaped, and in L. nitens they are hollow and rod- as well as platelet-shaped. We analyzed the coloration of the feathers by applying imaging scatterometry, bifurcated-probe- and micro-spectrophotometry. The reflectance spectra of the feathers of the European starling showed multiple peaks and a distinct, single peak for the Cape starling feathers. Assuming that the barbules of the two starling species contain a simple multilayer, consisting locally only of a cortex plus a single layer of melanosomes, we interpret the experimental data by applying effective-medium-multilayer modeling. The optical modeling provides quantitative insight into the function of the keratin cortex thickness, being the principal factor to determine the peak wavelength of the reflectance bands; the melanosome layer only plays a minor role. The air cavity in the hollow melanosomes of the Cape starling creates a strongly enhanced refractive index contrast, thus very effectively causing a high reflectance.
Peacock feathers feature a rich gamut of colours, created by a most sophisticated structural colouration mechanism. The feather barbules contain biophotonic structures consisting of two-dimensionally-ordered lattices of cylindrical melanosomes and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.