BackgroundDisorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously.ResultsWe analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46,XY DSD and 48 with 46,XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46,XY DSD. In patients with 46,XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management.ConclusionsOur massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-016-1105-y) contains supplementary material, which is available to authorized users.
Lymphocytic hypophysitis was first recognized postmortem, then by biopsy, but detection of antipituitary autoantibodies by immunofluorescence has proved unsatisfactory. Immunoblotting has the dual advantages of increased specificity and identification of the mol wt of autoantigens. Sera from 115 patients and 52 normal subjects were immunoblotted against human autopsy pituitary cytosolic proteins. Among the neurosurgical cohort (30), 10 patients had biopsy-proven lymphocytic hypophysitis, and 20 had hypopituitarism secondary to tumor. There were 22 cases with suspected hypophysitis; 47 with either Hashimoto's, Graves', or Addison's diseases; and 15 with rheumatoid arthritis. Antipituitary autoantibodies reactive to a 49-kDa pituitary cytosolic protein were found in 70% of biopsy-proven lymphocytic hypophysitis, 55% of suspected hypophysitis, 42% of Addison's disease, 20% of pituitary tumors, 15% of patients with thyroid autoimmunity, 13% of rheumatoid arthritis patients, and 9.8% of normal subjects. Reactivity to a 40-kDa cytosolic protein was also found in 50% of patients with biopsy-proven disease. These 49- and 40-kDa autoantigens are conserved across species and are not exclusive to pituitary tissue. Immunoblotting has demonstrated antipituitary autoantibodies to 49- and 40-kDa cytosolic proteins in biopsy-proven cases of lymphocytic hypophysitis.
Background: Disordered thyroid hormone transport, due to mutations in the SLC16A2 gene encoding monocarboxylate transporter 8 (MCT8), is characterised by intellectual and motor disability resulting from cerebral hypothyroidism and chronic peripheral thyrotoxicosis. We sought to systematically assess the phenotypic characteristics and natural history of patients with MCT8 deficiency. Methods: We did an international, multicentre, cohort study, analysing retrospective data from Jan 1, 2003, to Dec 31, 2019, from patients with MCT8 deficiency followed up in 47 hospitals in 22 countries globally. The key inclusion criterion was genetically confirmed MCT8 deficiency. There were no exclusion criteria. Our primary objective was to analyse the overall survival of patients with MCT8 deficiency and document causes of death. We also compared survival between patients who did or did not attain full head control by age 1•5 years and between patients who were or were not underweight by age 1-3 years (defined as a bodyweight-for-age Z score <-2 SDs or <5th percentile according to WHO definition). Other objectives were to assess neurocognitive function and outcomes, and clinical parameters including anthropometric characteristics, biochemical markers, and neuroimaging findings. Findings: Between Oct 14, 2014, and Jan 17, 2020, we enrolled 151 patients with 73 different MCT8 (SLC16A2) mutations. Median age at diagnosis was 24•0 months (IQR 12•0-60•0, range 0•0-744•0). 32 (21%) of 151 patients died; the main causes of mortality in these patients were pulmonary infection (six [19%]) and sudden death (six [19%]). Median overall survival was 35•0 years (95% CI 8•3-61•7). Individuals who did not attain head control by age 1•5 years had an increased risk of death compared with patients who did attain head control (hazard ratio [HR] 3•46, 95% CI 1•76-8•34; log-rank test p=0•0041). Patients who were underweight during age 1-3 years had an increased risk for death compared with patients who were of normal bodyweight at this age (HR 4•71, 95% CI 1•26-17•58, p=0•021). The few motor and cognitive abilities of patients did not improve with age, as evidenced by the absence of significant correlations between biological age and scores on the Gross Motor Function Measure-88 and Bayley Scales of Infant Development III. Tri-iodothyronine concentrations were above the age-specific upper limit in 96 (95%) of 101 patients and free thyroxine concentrations were below the age-specific lower limit in 94 (89%) of 106 patients. 59 (71%) of 83 patients were underweight. 25 (53%) of 47 patients had elevated systolic blood pressure above the 90th percentile, 34 (76%) of 45 patients had premature atrial contractions, and 20 (31%) of 64 had resting tachycardia. The most consistent MRI finding was a global delay in myelination, which occurred in 13 (100%) of 13 patients. Interpretation: Our description of characteristics of MCT8 deficiency in a large patient cohort reveals poor survival with a high prevalence of treatable underlying risk factors, and provides ...
These patients illustrate the broad clinical spectrum of POR deficiency, including amenorrhea and infertility as the sole manifestation. POR assays based on P450c17 correlate well with hormonal and clinical phenotypes.
OBJECTIVE—Wolfram syndrome is an extremely rare autosomal-recessive disorder that predisposes the development of type 1 diabetes in association with progressive optic atrophy. The genetic basis of this disease has been shown to be due to mutations in the WFS1 gene. The WFS1 gene encodes a novel transmembrane protein called wolframin, which recent evidence suggests may serve as a novel endoplasmic reticulum calcium channel in pancreatic β-cells and neurons. Genotype-phenotype correlations in this syndrome are becoming apparent and may help in explaining some of the variable characteristics observed in this disease. RESEARCH DESIGN AND METHODS—In this report, we have studied 13 patients with Wolfram syndrome from nine families to further define the relationship between mutation site and type with specific disease characteristics. RESULTS—A severe phenotype was seen in patients with mutations in exon 4 and with a large deletion encompassing most of exon 8. In total, nine novel mutations were identified as well as three new silent polymorphisms. CONCLUSIONS—Similar to all other mutation reports, most causative changes identified in the WFS1 gene occurred in exon 8, and only one was identified outside this region in exon 4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.