We estimated the amount of oil remaining in Prince William Sound, Alaska, 12 yr after the 1989 Exxon Valdez spill to assess its importance as a long-term reservoir of toxic hydrocarbons. We found oil on 78 of 91 beaches randomly selected according to their oiling history. Surface oiling was recorded for randomly placed quadrats, which were then excavated and examined for subsurface oil. The cumulative area of beach contaminated by surface or subsurface oil was estimated at 11.3 ha. Surface oil varied little with tide height, but subsurface oil was more prevalent at the middle tide heights. The mass of remaining subsurface oil is conservatively estimated at 55 600 kg. Analysis of terpanes indicated that over 90% of the surface oil and all of the subsurface oil was from the Exxon Valdez and that Monterey Formation oil deposited after the 1964 Alaska earthquake accounted for the remaining surface oil. These results indicate that oil from the Exxon Valdez remains by far the largest reservoir of biologically available polycyclic aromatic hydrocarbons on beaches impacted by the spill and that biota dependent on these beaches risk continued exposure.
We examined 32 shorelines selected at random in 2003 from shorelines in Herring Bay, Lower Pass, and Bay of Isles in Prince William Sound, Alaska, to examine the vertical distribution of oil remaining from the 1989 Exxon Valdez oil spill and to estimate the probability that sea otters and ducks would encounter oil while foraging there. On each shoreline, sampling was stratified by 1-m tide height intervals and randomly located 0.25 m2 sampling quadrats were examined for evidence of surface and subsurface oil. Oil from the T/V Exxon Valdezwasfound on 14 shorelines, mainly in Herring Bay and Lower Pass, with an estimated 0.43 ha covered by surface oil and 1.52 ha containing subsurface oil. Surface and subsurface oil were most prevalent near the middle of the intertidal and had nearly symmetrical distributions with respect to tide height. Hence, about half the oil is in the biologically rich lower intertidal, where predators may encounter it while disturbing sediments in search of prey. The overall probability of encountering surface or subsurface oil is estimated as 0.0048, which is only slightly greaterthan our estimated probability of encountering subsurface oil in the lower intertidal of Herring Bay or Lower Pass. These encounter probabilities are sufficient to ensure that sea otters and ducks that routinely excavate sediments while foraging within the intertidal would likely encounter subsurface oil repeatedly during the course of a year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.