Since its identification in April 2009 an A(H1N1) virus containing a unique combination of gene segments from both North American and Eurasian swine lineages has continued to circulate in humans. The 2009 A(H1N1) virus is distantly related to its nearest relatives, indicating that its gene segments have been circulating undetected for an extended period. Low genetic diversity among the viruses suggests the introduction into humans was a single event or multiple events of similar viruses. Molecular markers predicted for adaptation to humans are not currently present in 2009 A(H1N1) viruses, suggesting previously unrecognized molecular determinants could be responsible for the transmission among humans. Antigenically the viruses are homogeneous and similar to North American swine A(H1N1) viruses but distinct from seasonal human A(H1N1).
We show that comprehensive sequence-function maps obtained by deep sequencing can be used to reprogram interaction specificity and to leapfrog over bottlenecks in affinity maturation by combining many individually small contributions not detectable in conventional approaches. We use this approach to optimize two computationally designed inhibitors against H1N1 influenza hemagglutinin and, in both cases, obtain variants with subnanomolar binding affinity. The most potent of these, a 51-residue protein, is broadly cross-reactive against all influenza group 1 hemagglutinins, including human H2, and neutralizes H1N1 viruses with a potency that rivals that of several human monoclonal antibodies, demonstrating that computational design followed by comprehensive energy landscape mapping can generate proteins with potential therapeutic utility.
BackgroundArthropod-borne viruses (arboviruses) are among the most common agents of human febrile illness worldwide and the most important emerging pathogens, causing multiple notable epidemics of human disease over recent decades. Despite the public health relevance, little is know about the geographic distribution, relative impact, and risk factors for arbovirus infection in many regions of the world. Our objectives were to describe the arboviruses associated with acute undifferentiated febrile illness in participating clinics in four countries in South America and to provide detailed epidemiological analysis of arbovirus infection in Iquitos, Peru, where more extensive monitoring was conducted.Methodology/FindingsA clinic-based syndromic surveillance system was implemented in 13 locations in Ecuador, Peru, Bolivia, and Paraguay. Serum samples and demographic information were collected from febrile participants reporting to local health clinics or hospitals. Acute-phase sera were tested for viral infection by immunofluorescence assay or RT-PCR, while acute- and convalescent-phase sera were tested for pathogen-specific IgM by ELISA. Between May 2000 and December 2007, 20,880 participants were included in the study, with evidence for recent arbovirus infection detected for 6,793 (32.5%). Dengue viruses (Flavivirus) were the most common arbovirus infections, totaling 26.0% of febrile episodes, with DENV-3 as the most common serotype. Alphavirus (Venezuelan equine encephalitis virus [VEEV] and Mayaro virus [MAYV]) and Orthobunyavirus (Oropouche virus [OROV], Group C viruses, and Guaroa virus) infections were both observed in approximately 3% of febrile episodes. In Iquitos, risk factors for VEEV and MAYV infection included being male and reporting to a rural (vs urban) clinic. In contrast, OROV infection was similar between sexes and type of clinic.Conclusions/SignificanceOur data provide a better understanding of the geographic range of arboviruses in South America and highlight the diversity of pathogens in circulation. These arboviruses are currently significant causes of human illness in endemic regions but also have potential for further expansion. Our data provide a basis for analyzing changes in their ecology and epidemiology.
Polymorphisms in IL-2, IL-6, IL-10, and IFN-gamma genes are associated with their protein production after anti-CD3/CD28 stimulation. The profound effect of the IL-2 gene polymorphism in homozygous individuals may serve as a marker for those that could mount the most vigorous allo- or autoimmune responses, or perhaps become tolerant more easily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.