The pharmacokinetics of lisdexamfetamine dimesylate, a long-acting prodrug stimulant, and its active moiety, d-amphetamine, including dose-proportionality and variability, were assessed in 20 healthy adults. Subjects received a single dose, sequentially, of 50, 100, 150, 200, and 250 mg of lisdexamfetamine dimesylate. Plasma lisdexamfetamine dimesylate and d-amphetamine were measured before dosing and 0.25 to 96 hours postdose. Dose-proportionality and intersubject and intrasubject variability of pharmacokinetic parameters were examined. Safety assessments included adverse events. All 20 subjects received 50 and 100 mg while 18, 12, and 9 subjects received 150, 200, and 250 mg of lisdexamfetamine dimesylate, respectively. Ten subjects were discontinued during the study for prespecified stopping rules (2 consecutive hourly readings of blood pressure: systolic >160 mm Hg or diastolic >100 mm Hg). Mean maximum observed plasma concentration (C(max)) and area under the concentration-time curve from time 0 to infinity (AUC(0-∞)) increased linearly and dose-dependently for d-amphetamine. Median time to C(max) ranged from 4 to 6 hours for d-amphetamine and 1.0 to 1.5 hours for lisdexamfetamine dimesylate. Intersubject and intrasubject variability over doses from 50 to 150 mg was low (<20%) for both C(max) and AUC(0-∞). Adverse events included nausea, dizziness, headache, psychomotor hyperactivity, and dysuria. These findings indicate that the pharmacokinetic parameters of d-amphetamine were dose-proportional and predictable over a wide range of lisdexamfetamine dimesylate doses.
ObjectiveMidodrine hydrochloride is a short-acting pressor agent that raises blood pressure in the upright position in patients with orthostatic hypotension. The US Food and Drug Administration’s Subpart H approval, under which midodrine was initially approved, requires post-marketing studies to confirm midodrine’s clinical benefit in this indication. The purpose of this study was to evaluate the clinical benefit of midodrine with regard to symptom response.MethodsThis was a double-blind, placebo-controlled, randomized, crossover, multicenter study (NCT01518946). Following screening, patients aged ≥18 years with severe symptomatic orthostatic hypotension and on a stable dose of midodrine for at least 3 months were randomized to treatment with either their previous midodrine dose or placebo on day 1 and the respective alternate treatment on day 2. The primary endpoint measured time to syncopal symptoms or near-syncope using a 45-min tilt-table test at 1 h post-dose.ResultsThirty-three patients were screened for inclusion: 19 received at least one dose of midodrine and had at least one post-dose measurement of the primary endpoint. The least-squares mean time to syncopal symptoms or near-syncope after tilt-table initiation (mean ± standard error) was 1626.6 ± 186.8 s for midodrine and 1105.6 ± 186.8 s for placebo (difference, 521.0 s; 95 % confidence interval 124.2–971.7 s; p = 0.0131). There were 15 adverse events in 10 patients; all of these were mild or moderate in severity, with none considered by the investigators to be related to midodrine.InterpretationMidodrine is a well-tolerated and clinically effective treatment for symptomatic orthostatic hypotension.
Background. Lanthanum carbonate and sevelamer carbonate are non-calcium-based phosphate binders used to manage hyperphosphataemia in patients with chronic kidney disease (CKD). Patients with CKD may require intravenous or oral active vitamin D. We investigated the effects of lanthanum carbonate and sevelamer carbonate on the bioavailability of oral calcitriol.Methods. This was a three-period, crossover study in healthy volunteers. Forty-one individuals were randomized to one of six possible sequences, each consisting of three treatment periods separated by washouts. The treatments were calcitriol (1 μg at lunch), calcitriol with lanthanum carbonate (3000 mg/day) and calcitriol with sevelamer carbonate (7200 mg/day). Serum calcitriol levels were assessed at baseline and throughout the study.Results. Co-administration of lanthanum carbonate with calcitriol had no significant effect on area under the curve over 48 h (AUC0–48) for serum exogenous calcitriol [least-squares (LS) mean, calcitriol with lanthanum carbonate vs calcitriol alone: 429 pg h/mL vs 318 pg h/mL, respectively; P = 0.171]. Similarly, there was no significant effect on maximum concentration (Cmax). In contrast, co-administration with sevelamer was associated with a significant reduction in bioavailability parameters for calcitriol (calcitriol with sevelamer carbonate vs calcitriol alone, LS mean AUC0–48: 137 pg h/mL vs 318 pg h/mL, respectively; P = 0.024; LS mean Cmax: 40.1 pg/mL vs 49.7 pg/mL, respectively; P < 0.001).Conclusions. Sevelamer carbonate significantly reduces serum concentrations of exogenous calcitriol when administered concomitantly with oral calcitriol, whereas lanthanum carbonate has no significant effect. This should be considered when treating CKD patients who require phosphate binders and oral vitamin D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.