The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.
The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the ‘dark’ proteome.
Background: The goal of the gene normalization task is to link genes or gene products mentioned in the literature to biological databases. This is a key step in an accurate search of the biological literature. It is a challenging task, even for the human expert; genes are often described rather than referred to by gene symbol and, confusingly, one gene name may refer to different genes (often from different organisms). For BioCreative II, the task was to list the Entrez Gene identifiers for human genes or gene products mentioned in PubMed/MEDLINE abstracts. We selected abstracts associated with articles previously curated for human genes. We provided 281 expert-annotated abstracts containing 684 gene identifiers for training, and a blind test set of 262 documents containing 785 identifiers, with a gold standard created by expert annotators. Inter-annotator agreement was measured at over 90%.
BackgroundWe report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k).ResultsWe received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively.ConclusionsBy using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.