Mucosa-associated invariant T (MAIT) cells are innate-like T cells with a conserved TCR α-chain recognizing bacterial metabolites presented on the invariant MHC-related 1 molecule. MAIT cells are present in intestinal tissues and liver, and they rapidly secrete IFN-γ and IL-17 in response to bacterial insult. In colon cancer, IL-17–driven inflammation promotes tumor progression, whereas IFN-γ production is essential for antitumor immunity. Thus, tumor-associated MAIT cells may affect antitumor immune responses by their secreted cytokines. However, the knowledge of MAIT cell presence and function in tumors is virtually absent. In this study, we determined the frequency, phenotype, and functional capacity of MAIT cells in colon adenocarcinomas and unaffected colon lamina propria. Flow cytometric analyses showed significant accumulation of MAIT cells in tumor tissue, irrespective of tumor stage or localization. Colonic MAIT cells displayed an activated memory phenotype and expression of chemokine receptors CCR6 and CCR9. Most MAIT cells in unaffected colon tissues produced IFN-γ, whereas only few produced IL-17. Colonic MAIT cells also produced TNF-α, IL-2, and granzyme B. In the tumors, significantly lower frequencies of IFN-γ–producing MAIT cells were seen, whereas there were no differences in the other cytokines analyzed, and in vitro studies showed that secreted factors from tumor tissue reduced IFN-γ production from MAIT cells. In conclusion, MAIT cells infiltrate colon tumors but their ability to produce IFN-γ is substantially reduced. We suggest that MAIT cells have the capacity to promote local immune responses to tumors, but factors in the tumor microenvironment act to reduce MAIT cell IFN-γ production.
Mucosal-associated invariant T (MAIT) cells all express a semi-invariable T cell receptor recognizing microbial metabolites presented on the MHC class I-like molecule MR1. Upon activation, they rapidly secrete cytokines and increase their cytotoxic potential. We showed recently that MAIT cells with Th1 phenotype accumulate in human colon adenocarcinomas. Here, we investigated the cytotoxic potential of tumor-infiltrating MAIT cells in colon adenocarcinomas, and to what extent it may be affected by the tumor microenvironment. Activation of MAIT cells from tumors induced increased Granzyme B, and to a lesser extent, perforin expression. Degranulation was assessed by surface expression of CD107a, and was also seen in response to cognate antigen recognition. The cytotoxic potential of tumor-associated MAIT cells was very similar to that of MAIT cells from unaffected colon. MAIT cells were also identified by immunofluorescence in direct contact with tumor cells in sections from colon cancer specimens. To summarize, tumor-associated MAIT cells from colon tumors have strong cytotoxic potential and are not compromised in this regard compared to MAIT cells from the unaffected colon. We conclude that MAIT cells may contribute significantly to the protective immune response to tumors, both by secretion of Th1-associated cytokines and by direct killing of tumor cells.
T cell-mediated immunity is a major component of antitumor immunity. In order to be efficient, effector T cells must leave the circulation and enter into the tumor tissue. Regulatory T cells (Treg) from gastric cancer patients, but not from healthy volunteers, potently inhibit migration of conventional T cells through activated endothelium. In this study, we compared T cells from colon cancer patients and healthy donors to determine the mechanisms used by Tregs from cancer patients to inhibit conventional T-cell migration. Our results showed that circulating Tregs from cancer patients expressed high levels of CD39, an ectoenzyme mediating hydrolysis of ATP to AMP, as a ratedetermining first step in the generation of immunosuppressive adenosine. Tumor-associated Tregs expressed even more CD39, and we therefore examined the importance of adenosine in Tregmediated inhibition of T-cell transendothelial migration in vitro. Exogenous adenosine significantly reduced migration of conventional T cells from healthy volunteers, and blocking either adenosine receptors or CD39 enzymatic activity during transmigration restored the ability of conventional T cells from cancer patients to migrate. Adenosine did not directly affect T cells or endothelial cells, but reduced the ability of monocytes to activate the endothelium. Taken together, our results indicate that Treg-derived adenosine acts on monocytes and contributes to reduced transendothelial migration of effector T cells into tumors. This effect of Tregs is specific for cancer patients, and our results indicate that Tregs may affect not only T-cell effector functions but also their migration into tumors.
Mucosal-associated invariant T (MAIT) cells are unconventional T cells recognizing microbial metabolites, presented by the invariant MR1 protein. Upon activation, MAIT cells rapidly secrete cytokines and exert cytotoxic functions, and may thus be highly relevant also in tumor immunity. MAIT cells accumulate in colon tumors, but in contrast to other cytotoxic T cell subsets, their presence in tumors has been associated with worse patient outcome. Here we investigated if exhaustion may contribute to reduced anti-tumor immunity by MAIT cells. Freshly isolated lymphocytes from colon tumors, unaffected tissue and blood from the same patients were analyzed by flow cytometry to detect MAIT cells with effector functions that are relevant for tumor immunity, and their expression of inhibitory receptors and other exhaustion markers. Our studies show that MAIT cells with a PD-1highTim-3+CD39+ terminally exhausted phenotype and an increased proliferation accumulate in colon tumors. The exhausted MAIT cells have reduced polyfunctionality with regard to production of important anti-tumor effector molecules, and blocking antibodies to PD-1 partly improved activation of tumor-infiltrating MAIT cells in vitro. We conclude that the tumor microenvironment leads to exhaustion not only of conventional T cells, but also MAIT cells, and that checkpoint blockade therapy may be useful also to reinvigorate tumor-infiltrating MAIT cells.
Organ-specific homing of lymphoid cells depends on the expression of tissue-specific adhesion molecules and production of specific chemokines. CCL25 (TECK) and CCL28 (MEC) have been reported to direct circulating memory/effector B cells to mucosal tissues. Here, we examined if differential responsiveness to mucosal and systemic chemokines could explain the differential migration pattern of circulating human antibody-secreting cells (ASC), induced by mucosal and systemic immunization. There was a robust migration of specific IgA-and IgM-ASC induced by Salmonella vaccination toward the mucosal chemokines CCL25 and CCL28. In contrast, tetanus-specific ASC migrated to the systemic chemokine CXCL12 (SDF-1a) and showed no response to CCL25 or CCL28, not even tetanus-specific IgA-ASC. Cell sorting experiments demonstrated that Salmonella-specific ASC co-expressed CCR9 and CCR10. Our results show that induction site, rather than isotype commitment, determines the chemokine responsiveness and migration pattern of human effector B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.