Reducing the time required for initial integration of bone-contacting implants with host tissues would be of great clinical significance. Changes in osteoblast adhesion formation and reorganization of the F-actin cytoskeleton in response to altered topography are known to be upstream of osteoblast differentiation, and these processes are regulated by the Rho GTPases. Rac and RhoA (through Rho Kinase (ROCK)). Using pharmacological inhibitors, we tested how inhibition of Rac and ROCK influenced osteoblast adhesion, differentiation and mineralization on PT (Pre-treated) and SLA (sandblasted large grit, acid etched) topographies. Inhibition of ROCK, but not Rac, significantly reduced adhesion number and size on PT, with adhesion size consistent with focal complexes. After 1 day, ROCK, but not Rac inhibition increased osteocalcin mRNA levels on SLA and PT, with levels further increasing at 7 days post seeding. ROCK inhibition also significantly increased bone sialoprotein expression at 7 days, but not BMP-2 levels. Rac inhibition significantly reduced BMP-2 mRNA levels. ROCK inhibition increased nuclear translocation of Runx2 independent of surface roughness. Mineralization of osteoblast cultures was greater on SLA than on PT, but was increased by ROCK inhibition and attenuated by Rac inhibition on both topographies. In conclusion, inhibition of ROCK signalling significantly increases osteoblast differentiation and biomineralization in a topographic dependent manner, and its pharmacological inhibition could represent a new therapeutic to speed bone formation around implanted metals and in regenerative medicine applications.
Gingival connective tissue often has a composition resembling that of scar surrounding dental implant abutments. Increased cell adhesion, α-smooth muscle actin (α-SMA) expression and increased extracellular matrix deposition are a hallmark of fibrotic cells, but how topographic features influence gingival fibroblast adhesion and adoption of the α-SMA positive myofibroblast phenotype associated with scarring is unknown. The purpose of the present study was to demonstrate whether implant topographies that limit adhesion formation would reduce myofibroblast differentiation and extracellular matrix deposition. Human gingival fibroblasts were cultured on PT (smooth) and SLA (roughened) titanium discs for varying time-points. At 1 and 2 weeks after seeding, incorporation of α-SMA into stress-fibre bundles and fibronectin deposition was significantly higher on PT than SLA surfaces indicating differentiation of the cells towards a myofibroblast phenotype. Analysis of adhesion formation demonstrated that cells formed larger adhesions and more stable adhesions on PT, with more nascent adhesions observed on SLA. Gene expression analysis identified up-regulation of 15 genes at 24 hrs on SLA versus PT associated with matrix remodelling. Pharmacological inhibition of Src/FAK signalling in gingival fibroblasts on PT reduced fibronectin deposition and CCN2 expression. We conclude that topographical features that reduce focal adhesion stability could be applied to inhibit myofibroblast differentiation in gingival fibroblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.