An efficient, copper-based catalyst has been discovered that oxidizes a wide range of alcohols into aldehydes and ketones under mild conditions. This catalytic system utilizes oxygen or air as the ultimate, stoichiometric oxidant, producing water as the only by-product.
Mutant
huntingtin (mHTT) protein carrying the elongated N-terminal
polyglutamine (polyQ) tract misfolds and forms protein aggregates
characteristic of Huntington’s disease (HD) pathology. A high-affinity
ligand specific for mHTT aggregates could serve as a positron emission
tomography (PET) imaging biomarker for HD therapeutic development
and disease progression. To identify such compounds with binding affinity
for polyQ aggregates, we embarked on systematic structural activity
studies; lead optimization of aggregate-binding affinity, unbound
fractions in brain, permeability, and low efflux culminated in the
discovery of compound 1, which exhibited target engagement
in autoradiography (ARG) studies in brain slices from HD mouse models
and postmortem human HD samples. PET imaging studies with 11C-labeled 1 in both HD mice and WT nonhuman primates
(NHPs) demonstrated that the right-hand-side labeled ligand [11C]-1R (CHDI-180R) is a suitable PET tracer for
imaging of mHTT aggregates. [11C]-1R is now
being advanced to human trials as a first-in-class HD PET radiotracer.
The oxidation of alcohols into aldehydes and ketones can be efficiently performed using catalytic
amounts of CuCl·Phen and molecular oxygen or air. This novel, ecologically friendly procedure
releases water as the only byproduct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.