Complex landscapes with high topographic relief and intricate geometry present challenges for complete and accurate mapping of both lateral (x, y) and vertical (z) detail without deformation. Although small uninhabited/unmanned aerial vehicles (UAVs) paired with structure-from-motion (SfM) image processing has recently emerged as a popular solution for a range of mapping applications, common image acquisition and processing strategies can result in surface deformation along steep slopes within complex terrain. Incorporation of oblique (off-nadir) images into the UAV–SfM workflow has been shown to reduce systematic errors within resulting models, but there has been no consensus or documentation substantiating use of particular imaging angles. To address these limitations, we examined UAV–SfM models produced from image sets collected with various imaging angles (0–35°) within a high-relief ‘badland’ landscape and compared resulting surfaces with a reference dataset from a terrestrial laser scanner (TLS). More than 150 UAV–SfM scenarios were quantitatively evaluated to assess the effects of camera tilt angle, overlap, and imaging configuration on the precision and accuracy of the reconstructed terrain. Results indicate that imaging angle has a profound impact on accuracy and precision for data acquisition with a single camera angle in topographically complex scenes. Results also confirm previous findings that supplementing nadir image blocks with oblique images in the UAV–SfM workflow consistently improves spatial accuracy and precision and reduces data gaps and systematic errors in the final point cloud. Subtle differences among various oblique camera angles and imaging patterns suggest that higher overlap and higher oblique camera angles (20–35°) increased precision and accuracy by nearly 50% relative to nadir-only image blocks. We conclude by presenting four recommendations for incorporating oblique images and adapting flight parameters to enhance 3D mapping applications with UAV–SfM in high-relief terrain.
Fluvial deposits are highly heterogeneous and inherently challenging to map in outcrop due to a combination of lateral and vertical variability along with a lack of continuous exposure. Heavily incised landscapes, such as badlands, reveal continuous three-dimensional (3-D) outcrops that are ideal for constraining the geometry of fluvial deposits and enabling reconstruction of channel morphology through time and space. However, these complex 3-D landscapes also create challenges for conventional field mapping techniques, which offer limited spatial resolution, coverage, and/or lateral contiguity of measurements. To address these limitations, we examined an emerging technique using images acquired from a small unmanned aerial vehicle (UAV) and structure-from-motion (SfM) photogrammetric processing to generate a 3-D digital outcrop model (DOM). We applied the UAV-SfM technique to develop a DOM of an Upper Cretaceous channel-belt sequence exposed within a 0.52 km 2 area of Dinosaur Provincial Park (southeastern Alberta, Canada). Using the 3-D DOM, we delineated the lower contact of the channel-belt sequence, created digital sedimentary logs, and estimated facies with similar conviction to field-based estimations (±4.9%). Lateral accretion surfaces were also recognized and digitally traced within the DOM, enabling measurements of accretion direction (dip azimuth), which are nearly impossible to obtain accurately in the field. Overall, we found that measurements and observations derived from the UAV-SfM DOM were commensurate with conventional ground-based mapping techniques, but they had the added advantage of lateral continuity, which aided interpretation of stratigraphic surfaces and facies. This study suggests that UAV-SfM DOMs can complement traditional field-based methods by providing detailed 3-D views of topographically complex outcrop exposures spanning intermediate to large spatial extents.
Small aerial drones are used in a growing number of commercial applications. However, drones cannot fly in all weather, which impacts their reliability for time-sensitive operations. The magnitude and global variability of weather impact is poorly understood. We explore weather-limited drone flyability (the proportion of time drones can fly safely) by comparing historical wind speed, temperature, and precipitation data to manufacturer-reported thresholds of common commercial and weather-resistant drones with a computer simulation. We show that global flyability is highest in warm and dry continental regions and lowest over oceans and at high latitudes. Median global flyability for common drones is low: 5.7 h/day or 2.0 h/day if restricted to daylight hours. Weather-resistant drones have higher flyability (20.4 and 12.3 h/day, respectively). While these estimates do not consider all weather conditions, results suggest that improvements to weather resistance can increase flyability. An inverse analysis for major population centres shows the largest flyability gains for common drones can be achieved by increasing maximum wind speed and precipitation thresholds from 10 to 15 m/s and 0–1 mm/h, respectively.
High-resolution 3D data sets, such as digital outcrop models (DOMs), are increasingly being used by geoscientists to supplement field observations and enable multiscale and repeatable analysis that was previously difficult, if not impossible, to achieve using conventional methods. Despite an increasing archive of DOMs driven by technological advances, the ability to share and visualize these data sets remains a challenge due to large file sizes and the need for specialized software. Together, these issues limit the open exchange of data sets and interpretations. To promote greater data accessibility for a broad audience, we implement three modern platforms for disseminating models and interpretations within an open science framework: Sketchfab, potree, and Unity. Web-based platforms, such as Sketchfab and potree, render interactive 3D models within standard web browsers with limited functionality, whereas game engines, such as Unity, enable development of fully customizable 3D visualizations compatible with multiple operating systems. We review the capabilities of each platform using a DOM of an extensive outcrop exposure of Late Cretaceous fluvial stratigraphy generated from uninhabited aerial vehicle images. Each visualization platform provides end-users with digital access and intuitive controls to interact with large DOM data sets, without the need for specialized software and hardware. We demonstrate a range of features and interface customizability that can be created and suggest potential use cases to share interpretations, reinforce student learning, and enhance scientific communication through unique and accessible visualization experiences.
Downstream migration of point bars is an important process in meander belts. Inherent to downstream migration is sediment accumulation in concave channel banks, immediately adjacent to and downstream of convex point bars. Despite this, associated concave bank processes are often overlooked, with depositional products sparsely identified in the stratigraphic record. Counter‐point‐bar deposits are a type of concave‐bank deposit that have been positively identified in subsurface three‐dimensional seismic datasets, yet outcrop examples are not well‐constrained. This study characterizes and establishes recognition criteria of counter‐point‐bar deposits in outcrop using extensive exposure of Late‐Cretaceous meander‐belt deposits in eastern Alberta, Canada. Using a combination of traditional field‐based sedimentological analyses and three‐dimensional outcrop mapping with an Uncrewed Aerial Vehicle and Structure‐from‐Motion photogrammetry, point bar, counter‐point bar, and associated abandoned‐channel deposits, as well as adjacent floodplain deposits are identified. Bed‐scale characteristics of counter‐point‐bar deposits include interlaminated and interbedded siltstone and fine‐grained sandstone, abundant organic detritus, and evidence of deformation and slumping. At the bend scale, accretion packages bounded by internal erosion surfaces are composed of dipping siltstone and minor sandstone beds that extend from the top to the base of the meander belt. At the belt scale, positive identification relies on concave accretion surface mapping, their orientation relative to the meander‐belt edge (i.e. dipping away), and consideration of meander‐bend evolution. These results have implications for recognition of counter‐point‐bar deposits in analogous, less‐constrained data sets, which provides a foundation for more complete palaeoenvironmental interpretations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.