Smart health (s-health) is a vital topic and an essential research field today, supporting the real-time monitoring of user’s data by using sensors, either in direct or indirect contact with the human body. Real-time monitoring promotes changes in healthcare from a reactive to a proactive paradigm, contributing to early detection, prevention, and long-term management of health conditions. Under these new conditions, continuous user authentication plays a key role in protecting data and access control, once it focuses on keeping track of a user’s identity throughout the system operation. Traditional user authentication systems cannot fulfill the security requirements of s-health, because they are limited, prone to security breaches, and require the user to frequently authenticate by, e.g., a password or fingerprint. This interrupts the normal use of the system, being highly inconvenient and not user friendly. Also, data transmission in current authentication systems relies on wireless technologies, which are susceptible to eavesdropping during the pairing stage. Biological signals, e.g., electrocardiogram (ECG) and electroencephalogram (EEG), can offer continuous and seamless authentication bolstered by exclusive characteristics from each individual. However, it is necessary to redesign current authentication systems to encompass biometric traits and new communication technologies that can jointly protect data and provide continuous authentication. Hence, this article presents a novel biosignal authentication system, in which the photoplethysmogram (PPG) biosignal and a galvanic coupling (GC) channel lead to continuous, seamless, and secure user authentication. Furthermore, this article contributes to a clear organization of the state of the art on biosignal-based continuous user authentication systems, assisting research studies in this field. The evaluation of the system feasibility presents accuracy in keeping data integrity and up to 98.66% accuracy in the authentication process.
A autenticação biométrica suporta diferentes aplicações e tem ganho um papel fundamental nas redes vestíveis por suplantar limitações das interfaces homem-máquina de seus dispositivos. Em geral, os métodos de autenticação dependem de eventos únicos, como reconhecimento de íris ou face, exigindo a validação da identidade do usuário sempre que ele precisa acessar o sistema. Todavia, com a recente inclusão de biosensores em dispositivos vestíveis, alguns sinais são coletados constantemente, permitindo uma autenticação contínua. Entretanto, os métodos existentes de autenticação contínua via ECG e EMG são custosos, complexos ou inconvenientes para o usuário. Assim, para superar esses problemas, este artigo propõe o sistema BEAT, o qual utiliza biosinais do fotopletismograma (do inglês, photoplethysmogram-PPG) para estimar mudanças volumétricas no fluxo sanguíneo. Além disso, o sistema BEAT transmite os sinais coletados pela pele (i.e., comunicação por acoplamento galvânico), sendo o tecido epitelial um canal secundário seguro contra ataques baseados em radiofrequência. Os resultados de avaliações experimentais demonstram a viabilidade e eficiência do sistema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.