This paper proposed a novel Block based Mean Shift Image Segmentation Algorithm to significantly reduce the computation and improve the segmentation accuracy for high resolution Medical Image. One of the challenging tasks in the image analysis and computer vision area is to correctly classify the pixels as there are no crisp borders among entities in an image. In this proposed methodology, it is observed that the computational complexity of the procedure is diminished by combining the pixels of an image of size MXN into non overlapping image blocks of size 3x3 by eliminating the iterative way of the mean shift procedure. This proposed algorithm shrinks the size of the image by one third of its original image for the computational purpose and then equalizes the number of computations for each new image pixel by constructing links between pixels using their first mean-shift vectors without any iteration process. The accurateness and effectiveness of the proposed methodology is matched with the existing Iterative Mean Shift Algorithm by accomplishing the empherical experiments on the Medical Images (Pathologies Buccales and Eye Retina) composed along with the similarity measures.
The detection of plant leaf is an very important factor to prevent serious outbreak. Automatic detection of plant disease is essential research topic. Most plant diseases are caused by fungi, bacteria, and viruses. Fungi are identified primarily from their morphology, with emphasis placed on their reproductive structures. Bacteria are considered more primitive than fungi and generally have simpler life cycles. With few exceptions, bacteria exist as single cells and increase in numbers by dividing into two cells during a process called binary fission Viruses are extremely tiny particles consisting of protein and genetic material with no associated protein. The term disease is usually used only for the destruction of live plants. The developed processing scheme consists of four main steps, first a color transformation structure for the input RGB image is created, this RGB is converted to HSI because RGB is for color generation and his for color descriptor. Then green pixels are masked and removed using specific threshold value, then the image is segmented and the useful segments are extracted, finally the texture statistics is computed. from SGDM matrices. Finally the presence of diseases on the plant leaf is evaluated.
Online reviews have great impact on today's business and commerce. Decision making for purchase of online products mostly depends on reviews given by the users. Hence, opportunistic individuals or groups try to manipulate product reviews for their own interests. This paper introduces some semi-supervised and supervised text mining models to detect fake online reviews as well as compares the efficiency of both techniques on data set containing hotel reviews.
This paper proposed a novel Block based Mean Shift Image Segmentation Algorithm to significantly reduce the computation and improve the segmentation accuracy for high resolution Medical Image. One of the challenging tasks in the image analysis and computer vision area is to correctly classify the pixels as there are no crisp borders among entities in an image. In this proposed methodology, it is observed that the computational complexity of the procedure is diminished by combining the pixels of an image of size MXN into non overlapping image blocks of size 3x3 by eliminating the iterative way of the mean shift procedure. This proposed algorithm shrinks the size of the image by one third of its original image for the computational purpose and then equalizes the number of computations for each new image pixel by constructing links between pixels using their first mean-shift vectors without any iteration process. The accurateness and effectiveness of the proposed methodology is matched with the existing Iterative Mean Shift Algorithm by accomplishing the empherical experiments on the Medical Images (Pathologies Buccales and Eye Retina) composed along with the similarity measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.