This article describes and discusses research into the perspectives for deploying the IoT (Internet of Things) within the Czech energy industry. Our conclusions are based on empirical research performed among 50 energy-industry experts in 2016 and 2017. This was two-stage research in which we held interviews with these experts in order to select the set of the most acceptable IoT technologies for deployment in the energy industry, and then used the TOPSIS method to select the most suitable technologies among them for deployment in the Czech environment. For use in determining the most suitable technologies, we also defined—with the help of the mentioned experts—individual selection parameters and weightings for them, enabling us to apply the TOPSIS method to the selected set of technologies. Our result was the selection of the SIGFOX IoT technology.
This article deals with the deployment of an Internet of Things (IoT) technology within the energy industry (energy distribution) in the Czech Republic. The first part of the article is devoted to an assessment of the perspectives for developing IoT applications and implementing them within the economy, and then examines how the principles of multi-criteria decision-making are used to select IoT technologies for deployment in the energy industry. The selection of technology is also followed by the selection of the specific application with the highest potential benefit for the company using such a method to select the technology. The selection solution is demonstrated and further discussed from the technological and financial standpoints and illustrated via the example of choosing among two alternatives for a real-world application, very high voltage (VHV) frosting (in electric power transmission engineering, which is usually considered as any voltage between 52,000 and 300,000 V). The application solution is analyzed by how it relates to the direct vs indirect measurement of glaze ice. The result of this technical and financial analysis was that the direct glaze ice measurement variant is clearly the more advantageous one. The direct-measurement variant has a three-year payoff period, compared to six years for indirect measurement. Further, the benefits from the direct-measurement variant are 2.25 times larger than the other variant, and the five-year net profit value amounts to a profit for the direct-measurement variant while it results in a financial loss for the indirect-measurement variant. The recommended variant is to measure the icing of VHV lines directly.
<p><strong>Purpose:</strong> This article proposes and analyses the potential use of IoT solutions for detecting water consumption not only from technical, but also from the business and financial points of view. This topic is important because by solving this problem, companies may save a lot of money and this paper provides financial analysis, which answers question, if the implementation is or is not meaningful.</p><p><strong>Methodology/Approach:</strong> Source data used in this paper come from an extensive survey among fifty experts from the energy supply industry in the Czech Republic during two-round workshops. One of the most attractive application has been appointed “monitoring of utility consumption” – for this article the water metering.</p><p><strong>Findings:</strong> We have reached the conclusion that an isolated implementation of IoT technologies is much more expensive than the current solution that are based on human labour, periodical inspections of meters by people. This is caused mainly by high prices of the sonic/mechanical metering devices supporting IoT functionality.</p><p><strong>Research Limitation/implication:</strong> Workshops and research work were realised in conditions in the Czech Republic. Principles of application opportunities and of its implementation are general, but the final decisions about their importance can be influenced by the specifics and situation in the Czech Republic.</p><strong>Originality/Value of paper:</strong> The value of the paper comes from the workshops where were defined important application opportunities for definition of the priority for each of defined application opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.