Zeolites are porous aluminosilicate materials that have found applications in many different technologies. However, although simulations suggest that there are millions of possible zeolite topologies, only a little over 200 zeolite frameworks of all compositions are currently known, of which about 50 are pure silica materials. This is known as the zeolite conundrum--why have so few of all the possible structures been made? Several criteria have been formulated to explain why most zeolites are unfeasible synthesis targets. Here we demonstrate the synthesis of two such 'unfeasible' zeolites, IPC-9 and IPC-10, through the assembly-disassembly-organization-reassembly mechanism. These new high-silica zeolites have rare characteristics, such as windows that comprise odd-membered rings. Their synthesis opens up the possibility of preparing other zeolites that have not been accessible by traditional solvothermal synthetic methods. We envisage that these findings may lead to a step change in the number and types of zeolites available for future applications.
A novel methodology, called ADOR (assembly-disassembly-organisation-reassembly), for the synthesis of zeolites is reviewed here in detail. The ADOR mechanism stems from the fact that certain chemical weakness against a stimulus may be present in a zeolite framework, which can then be utilized for the preparation of new solids through successive manipulation of the material. In this review, we discuss the critical factors of germanosilicate zeolites required for application of the ADOR protocol and describe the mechanism of hydrolysis, organisation and condensation to form new zeolites starting from zeolite UTL. Last but not least, we discuss the potential of this methodology to form other zeolites and the prospects for future investigations.
Many chemical compositions produce layered solids consisting of extended sheets with thickness not greater than a few nanometers. The layers are weakly bonded together in a crystal and can be modified into various nanoarchitectures including porous hierarchical structures. Several classes of 2-dimensional (2D) materials have been extensively studied and developed because of their potential usefulness as catalysts and sorbents. They are discussed in this review with focus on clays, layered transition metal oxides, silicates, layered double hydroxides, metal(iv) phosphates and phosphonates, especially zirconium, and zeolites. Pillaring and delamination are the primary methods for structural modification and pore tailoring. The reported approaches are described and compared for the different classes of materials. The methods of characterization include identification by X-ray diffraction and microscopy, pore size analysis and activity assessment by IR spectroscopy and catalytic testing. The discovery of layered zeolites was a fundamental breakthrough that created unprecedented opportunities because of (i) inherent strong acid sites that make them very active catalytically, (ii) porosity through the layers and (iii) bridging of 2D and 3D structures. Approximately 16 different types of layered zeolite structures and modifications have been identified as distinct forms. It is also expected that many among the over 200 recognized zeolite frameworks can produce layered precursors. Additional advances enabled by 2D zeolites include synthesis of layered materials by design, hierarchical structures obtained by direct synthesis and top-down preparation of layered materials from 3D frameworks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.