Geographical Information Systems (GISs) in architecture were initially limited to regional and urban development applications. Over recent years its potential has been recognized and its use has evolved to address urban planning and architectural heritage management subjects. Nevertheless, evidence shows that its use in architecture teaching is scarce and uneven. Directive 2007/2/EC, establishing the infrastructure for spatial information in the European Community (EU), is, in this way, an opportunity to develop a greater knowledge and application of GIS in the framework of higher education. In architecture, this can be achieved by problem solving based on real case scenarios, which can benefit from GIS-based techniques and analysis capabilities. In this paper, the authors aim to present a review of the use of GIS in teaching and research in architecture to assess its level in different European programmes. Experiences from three European universities (University of Seville, Spain, University of Beira Interior, Portugal, and Technical University of Crete, Greece), which are among the few in their respective countries that promote the inclusion of GIS in architectural education, particularly in the fields of urban and regional planning and architectural heritage, are compared and framed within the European scenario. The paper concludes with a reflection on the three universities’ practice compared to the leading European architecture programmes listed in the main international university rankings. Main trends of future evolution on the use of GIS in architecture teaching are also presented.
The sulphurous mineral waters of ‘Entre-os-Rios’, which is sited in NW Portugal, are famous for their long history as thermal baths dating back at least to the mid-sixteenth century. Because of the singularity of its water composition, especially the highest sulphur content, the mineral waters of ‘Entre-os-Rios’ are one of the most important sulphurous waters in Portugal. Despite these mineral waters having a protection perimeter buffer zone to avoid water contamination, there are potentially damaging installations (e.g., fuel station) in the closed protection buffer zone that, according to existing law, are not permitted within the protection perimeters, which defeats the purpose of their delineation. A vulnerability map was created using geographic information system (GIS) tools based on multi-criteria analysis, combining thematic maps and parameters of the DRASTIC index, for evaluating the risk of contamination in the protection area. The results showed that within the perimeter, there was a low risk of pollution. The alluvium-covered terrain was vulnerable to moderate contamination, but it was far from the catchment point. Areas of minimal risk corresponded to locations where the granitic massif had not been significantly weathered. The map enables information collection for a better definition of local resource structures and planning, namely, for restricted areas emplacement where some activities should not be allowed (e.g., agriculture and water prospection), given its influence on the confined granitic aquifer.
Deposition of corpses in the ground is the most common burial practice, which can allow interactions between polluting compounds and the soil, groundwater, and surface water, which may afterwards lead to negative environmental impacts and risks to public health. The risk of cemeteries contaminating groundwater is related to their location, the quantity of clothes, metals and adornments buried, and geographical, geological, hydrogeological, and climatic factors. Using the DRASTIC index and geographical information system (GIS) tools, the potential for groundwater contamination was investigated in eight cemeteries located in the Figueira da Foz region (Portugal), which are the main anthropogenic pollution sources in the area. Aquifer vulnerability was assessed through the development of thirteen site characteristic maps, seven thematic maps, and a DRASTIC index vulnerability map, using GIS operation tools. No studies were found on the development of vulnerability maps with this method and digital tools. Cemeteries UC2, UC4, UC5, UC6, UC7, and UC8 are located within the zones susceptible to recharge, with an average recharge rate of 254 mm/year. Cemeteries UC5, UC7, and UC8 are expected to develop a greater water-holding capacity. The water table depth is more vulnerable at UC6, varying between 9.1 m and 15.2 m. However, results show only a high vulnerability associated with the UC4 cemetery with the contributions T,C > R,S > I > A > D, which should be under an environmental monitoring program. The area surrounding UC4 is characterized by a water table depth ranging between 15.2 m to 22.9 m, mainly fine-grained sands in both the vadose zone and the aquifer media, Gleyic Solonchaks at the topsoil, very unfavorable slope (0–2%), and high hydraulic conductivity (>81.5 m/day). The sensitivity analysis shows that the topography, soil media, and aquifer media weights were the most effective in the vulnerability assessment. However, the highest contributions to index variation were made by hydraulic conductivity, net recharge, and soil media. This type of approach not only makes it possible to assess the vulnerability of groundwater to contamination from cemeteries but also allows the definition of environmental monitoring plans as well as provides the entities responsible for its management and surveillance with a methodology and tools for its continuous monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.