This paper describes a general hybrid metaheuristic for combinatorial optimization labelled Construct, Merge, Solve & Adapt. The proposed algorithm is a specific instantiation of a framework known from the literature as Generate-And-Solve, which is based on the following general idea. First, generate a reduced sub-instance of the original problem instance, in a way such that a solution to the sub-instance is also a solution to the original problem instance. Second, apply an exact solver to the reduced sub-instance in order to obtain a (possibly) high quality solution to the original problem instance. And third, make use of the results of the exact solver as feedback for the next algorithm iteration. The minimum common string partition problem and the minimum covering arborescence problem are chosen as test cases in order to demonstrate the application of the proposed algorithm. The obtained results show that the algorithm is competitive with the exact solver for small to medium size problem instances, while it significantly outperforms the exact solver for larger problem instances.
This work presents a comparison between a Parallel Genetic Algorithm (PGA) and a Parallel Tabu Search (PTS) algorithm. Both are used for solving a scheduling problem on 45 tests based on the same parallel model, (Synchronous Network Concurrency Model) and testing sequential algorithms with 2, 4 and 8 processors. The results show that the PTS algorithm obtains better results, and covers a smaller portion of the solution space.
Abstract. The presented work proposes a new approach for anomaly detection. This approach is based on changes in a population of evolving agents under stress. If conditions are appropriate, changes in the population (modeled by the bioindicators) are representative of the alterations to the environment. This approach, based on an ecological view, improves functionally traditional approaches to the detection of anomalies.To verify this assertion, experiments based on Network Intrussion Detection Systems are presented. The results are compared with the behaviour of other bioinspired approaches and machine learning techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.