term 'response to organic substance' and KEGG pathway 'nitrogen metabolism' were enriched for drought-stressed leaves, while GO term 'cell wall organization or biogenesis' and KEGG pathway 'zeatin biosynthesis' were enriched for drought-stressed roots. The enrichment of the GO term 'enzyme linked receptor protein signalling pathway' in both leaf and root drought responses suggests that these tissues may also have similar mechanisms. However, roots under drought stress for four hs responded by activating programed cell death. The KEGG pathway 'plant hormone signal transduction' was detected for 4-and 12-h droughtstressed leaves and 12-h drought-stressed roots, suggesting that plant hormone signal transduction plays an important role in both roots and leaves. GO enrichment of upregulated and downregulated genes for leaves and roots reflect differentially regulatory mechanisms of response to drought stress via different biological processes such as the regulation of photosynthesis and auxin signalling pathway in leaves, and the regulation of defence response and water homeostasis in roots. Fifteen candidate genes, including transcription factors, protein kinase, transporter, late embryogenesis abundant protein and mannitol dehydrogenase, were further selected to determine their response to drought using qRT-PCR. The results show that the expression patterns of 13 of the 15 genes correspond to the RNA-seq results. This study provides new insights into the drought response mechanism of P. euphratica and suggests new candidate gene resources.
Background: Zygophyllum is an important medicinal plant, with notable properties such as resistance to salt, alkali, and drought, as well as tolerance of poor soils and shifting sand. However, the response mechanism of Zygophyllum spp. to abiotic stess were rarely studied. Results: Here, we aimed to explore the salt-tolerance genes of Zygophyllum plants by transcriptomic and metabolic approaches. We chose Z. brachypterum, Z. obliquum and Z. fabago to screen for salt tolerant and sensitive species. Cytological observation showed that both the stem and leaf of Z. brachypterum were significantly thicker than those of Z. fabago. Then, we treated these three species with different concentrations of NaCl, and found that Z. brachypterum exhibited the highest salt tolerance (ST), while Z. fabago was the most sensitive to salt (SS). With the increase of salt concentration, the CAT, SOD and POD activity, as well as proline and chlorophyll content in SS decreased significantly more than in ST. After salt treatment, the proportion of open stomata in ST decreased significantly more than in SS, although there was no significant difference in stomatal number between the two species. Transcriptomic analysis identified a total of 11 overlapping differentially expressed genes (DEGs) in the leaves and roots of the ST and SS species after salt stress. Two branched-chain-amino-acid aminotransferase (BCAT) genes among the 11 DEGs, which were significantly enriched in pantothenate and CoA biosynthesis, as well as the valine, leucine and isoleucine biosynthesis pathways, were confirmed to be significantly induced by salt stress through qRT-PCR. Furthermore, overlapping differentially abundant metabolites showed that the pantothenate and CoA biosynthesis pathways were significantly enriched after salt stress, which was consistent with the KEGG pathways enriched according to transcriptomics. Conclusions: In our study, transcriptomic and metabolomic analysis revealed that BCAT genes may affect the pantothenate and CoA biosynthesis pathway to regulate the salt tolerance of Zygophyllum species, which may constitute a newly identified signaling pathway through which plants respond to salt stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.