During the height of the COVID-19 epidemic, production lagged and enterprises could not deliver goods on time, which will bring considerable risks to the supply chain system. Modeling risk diffusion in supply chain networks is important for prediction and control. To study the influence of uncertain information on risk diffusion in a dynamic network, this paper constructs a dynamic evolution model based on a hypernetwork to study risk diffusion and control under uncertain information. First, a dynamic evolution model is constructed to represent the network topology, which includes the addition of links, rewiring of links, entry of nodes, and the exit of outdated nodes that obey the aging principle. Then, the risk diffusion scale is discussed with the Microscopic Markovian Chain Approach (MMCA), and the risk threshold is analyzed. Finally, the consistency of Monte Carlo (MC) simulation and MMCA is verified by MATLAB, and the influence of each parameter on the risk diffusion scale and risk threshold is tested. The results show that reducing the cooperation and production during the risk period, declining the attenuation factor, enhancing the work efficiency of the official media, and increasing the probability of the exit of outdated nodes in the supply chain networks will increase the risk threshold and restrain the risk diffusion.
In real life, individuals play an important role in the social networking system. When an epidemic breaks out the individual’s recovery rate depends heavily on the social network in which he or she lives. For this reason, in this paper a nonlinear coupling dynamic model on the hyper network was built. The upper layer is the dynamic social network under the hypernetwork vision, and the lower layer is the physical contact layer. Thus, the dynamic evolutionary coupling mechanism between the social network and epidemic transmission was established. At the same time, this paper deduced the evolution process of the dynamic system according to the Markov chain method. The probability equation of the dynamic evolution process was determined, and the threshold of epidemic spread on the non-uniform network was obtained. In addition, numerical simulations verified the correctness of the theory and the validity of the model. The results show that an individual’s recovery state will be affected by the individual’s social ability and the degree of information forgetting. Finally, suitable countermeasures are suggested to suppress the pandemic from spreading in response to the coupling model’s affecting factors.
Due to the continuous improvement of people’s awareness of sustainable development, sustainable financing enterprise selection (SFES) has gradually become a hotspot in the field of multi-criteria group decision-making (MCGDM). In the environment of increasing risk factors, how to accurately and objectively select the optimal enterprise for financing is still pending. Thus, this paper proposes an integrated plithogenic-neutrosophic rough number (P-NRN) information aggregation decision model. The model is adapted to group decision-making by taking advantages of plithogenic set operations in handling uncertainty and vagueness and the merit of NRN in eliminating imprecision and subjectivity of decision-makers (DM) in evaluating information boundaries. Then, this paper develops an MCGDM framework based on the weight determination techniques and complex proportional assessment (COPRAS). Moreover, by extending the similarity measure theory and the maximizing deviation method, the weights of DMs and risk criteria are derived, respectively. After obtaining the results of P-NRN information aggregation and weight evaluation, we apply COPRAS to conduct alternative ranking and select the optimal one. The proposed model is successfully implemented in a real case of financing enterprise selection, and comparisons with five representative tools from three decision-making phases are performed to verify the superiority of the model in dealing with uncertainty and subjectivity.
The impact of COVID-19 is global, and uncertain information will affect product quality and worker efficiency in the complex supply chain network, thus bringing risks. Aiming at individual heterogeneity, a partial mapping double-layer hypernetwork model is constructed to study the supply chain risk diffusion under uncertain information. Here, we explore the risk diffusion dynamics, drawing on epidemiology, and establish an SPIR (Susceptible–Potential–Infected–Recovered) model to simulate the risk diffusion process. The node represents the enterprise, and hyperedge represents the cooperation among enterprises. The microscopic Markov chain approach (MMCA) is used to prove the theory. Network dynamic evolution includes two removal strategies: (i) removing aging nodes; (ii) removing key nodes. Using Matlab to simulate the model, we found that it is more conducive to market stability to eliminate outdated enterprises than to control key enterprises during risk diffusion. The risk diffusion scale is related to interlayer mapping. Increasing the upper layer mapping rate to strengthen the efforts of official media to issue authoritative information will reduce the infected enterprise number. Reducing the lower layer mapping rate will reduce the misled enterprise number, thereby weakening the efficiency of risk infection. The model is helpful for understanding the risk diffusion characteristics and the importance of online information, and it has guiding significance for supply chain management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.