Adsorption, desorption, and degradation by nucleases of DNA on four different colloidal fractions from a Brown soil and clay minerals were studied. The adsorption of DNase I and the structures of native DNA, adsorbed and desorbed, were also investigated by Fourier Transform Infrared (FTIR), circular dichroism (CD), and fluorescence spectroscopy, to determine the protection mechanism of DNA molecules by soil colloids and minerals against enzymatic degradation. Kaolinite exhibited the highest adsorption affinity for DNA among the examined soil colloids and clay minerals. In comparison with organomineral complexes (organic clays), DNA was tightly adsorbed by H2O2-treated clays (inorganic clays). FTIR spectra showed that the binding of DNA on kaolinite and inorganic clays changed its conformation from the B-form to the Z-form, whereas montmorillonite and organic clays retained the original B-form of DNA. A structural change from the B- to the C-form in DNA molecules desorbed from kaolinite was observed by CD spectroscopy and confirmed by fluorescence spectroscopy. The presence of soil colloids and minerals provided protection to DNA against degradation by DNase I. The higher level of protection was found with montmorillonite and organic clays compared to kaolinite and inorganic clays. The protection of DNA against nuclease degradation by soil colloids and minerals is apparently not controlled by the adsorption affinity of DNA molecules for the colloids and the conformational change of bound DNA. The higher stability of DNA seemed to be attributed mainly to the presence of organic matter in the system and the adsorption of nucleases on soil colloids and minerals. The information obtained in this study is of fundamental significance for the understanding of the behavior of extracellular DNA in soil environment.
Venn diagrams are widely used diagrams to show the set relationships in biomedical studies. In this study, we developed ggVennDiagram, an R package that could automatically generate high-quality Venn diagrams with two to seven sets. The ggVennDiagram is built based on ggplot2, and it integrates the advantages of existing packages, such as venn, RVenn, VennDiagram, and sf. Satisfactory results can be obtained with minimal configurations. Furthermore, we designed comprehensive objects to store the entire data of the Venn diagram, which allowed free access to both intersection values and Venn plot sub-elements, such as set label/edge and region label/filling. Therefore, high customization of every Venn plot sub-element can be fulfilled without increasing the cost of learning when the user is familiar with ggplot2 methods. To date, ggVennDiagram has been cited in more than 10 publications, and its source code repository has been starred by more than 140 GitHub users, suggesting a great potential in applications. The package is an open-source software released under the GPL-3 license, and it is freely available through CRAN (https://cran.r-project.org/package=ggVennDiagram).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.