Ovarian cancer is the most lethal gynecological malignancy. Recurrence and chemoresistance are tough challenges leading to poor prognosis. HJURP is a molecular chaperone of CENP-A, which is associated with aggressive progression in multiple tumors. However, the function of HJURP in ovarian cancer has not been elucidated. In our study, we found HJURP was over-expressed in ovarian cancer and high expression of HJURP was correlated to unfavorable prognosis. HJURP knockdown could inhibit proliferation, metastasis and induce G0/G1 stagnation of ovarian cancer cells. Besides, next-generation sequencing (NGS) unveiled that WEE1 was down-regulated by silencing HJURP. Further mechanistic research revealed that HJURP regulated WEE1 through MYC, and luciferase assay indicated that MYC was a transcription factor of WEE1. Additionally, we investigated that silencing HJURP increased sensitivity of ovarian cancer cells to cisplatin via MYC/WEE1 axis, and HJURP participated in DNA repair of cisplatin-induced damage. More interestingly, silencing HJURP could enhance sensitivity of ovarian cancer cells to AZD1775 and improve the synergistic effect of cisplatin plus AZD1775 combined therapy. Collectively, our data displays that HJURP promotes tumor progression and chemoresistance of ovarian cancer, and HJURP has potential to be a novel therapeutic target in the combined treatment with cisplatin and AZD1775 in ovarian cancer.
Objective. Tong Xie Yao Fang (TXYF) is a classic and effective prescription in traditional Chinese medicine which is used to treat ulcerative colitis (UC). Our study investigated the effect of TXYF on Hippo pathway activation in UC-induced intestinal mucosa injury and explored the possible mechanism. Method. After ulcerative colitis was successfully induced by trinitrobenzene sulfonic acid (TNBS), 48 Sprague Dawley (SD) rats were randomly divided into a control group, model group, TXYF group, and sulfasalazine group and treated with the corresponding drugs for 28 days. The parameters including body weight, colon length, spleen index, and disease activity index (DAI) and histopathological characteristics were assessed. The myeloperoxidase (MPO) activity and IL-6 level in the colon mucosa were determined with the corresponding commercial kits. The expressions of the Hippo pathway components YAP1, TAZ, P-YAP, and LATS1 were detected in the colon mucosa of each group on different stages by quantitative real-time PCR (qRT-PCR) and western blotting. Immunohistochemical staining was used to evaluate the growth and apoptosis of the colon epithelium. Result. TXYF significantly improved the weight loss, colonic shortening, DAI, spleen enlargement, and histopathological score of the rats with TNBS-induced UC. TXYF also reduced the MPO activity and expression of IL-6 in the colon mucosa. Furthermore, treatment with TXYF significantly increased YAP1 expression in the early stage (3–7 days) and significantly decreased YAP1 expression in the late stage (14–28 days). In the early stage, TXYF inhibited Hippo pathway activity, which promoted proliferation and regeneration of the intestinal mucosa. In the late stage, the Hippo pathway was activated, thereby inhibiting apoptosis and promoting intestinal mucosal differentiation. Conclusion. TXYF alleviated the inflammatory response and promoted mucosal healing in rats with UC, which was probably achieved through the Hippo pathway. These results indicated that TXYF was a potential therapy for treating UC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.