Currently, some concerns regarding the potential toxicity of nanoparticles (NP) on the environment have emerged. The effect of ZnO, TiO2, and Fe2O3 NP on corn (Zea mays L.), common beans (Phaseolus vulgaris L.), nanobioremediation of polycyclic aromatic hydrocarbons (PAH), and soil organisms from agricultural or forest soils was studied at laboratory, greenhouse, and land level. The samples were analyzed by X-ray diffraction
(XRD), field emission scanning electron microscopy with X-ray energy dispersion spectrometry (FESEM-EDS), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) gas chromatography (GC), ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) and Fourier transform infrared spectrometry with attenuated total reflectance (FTIR-ATR). ZnO-NP did not harm the
mycorrhizal root colonization but, the presence of ZnO-NP decreased the degradation of PAH. The synthesis of metabolites from corn was more affected by the PAH than by ZnONP. FTIR spectra showed that NP affected the synthesis of compounds from specific functional groups in common bean plants. Fe2O3-NP were attached to the body of forestsoil organisms and significantly increased the concentration of Fe in their body, while TiO2-NP changed the morphological tissue of roots and stems of common bean as witnessed by micrographs of longitudinal and cross-sections. The NP used in this research significantly changed some response variables on the experiments carried-out at laboratory, greenhouse, and land level.
The impact of nanoparticles (NPs) on the morphological characteristics, functional groups, and chemical and microstructural features of plant tissues were evaluated using common bean (Phaseolus vulgaris L.) plants. Beans plants were grown for 90 days in an agricultural soil amended with TiO 2 , ZnO, and Fe 2 O 3 NPs at 150 or 300 mg kg -1 . Controls consisted of soil without NPs amendments. After 60 days of sowing (DAS), TiO 2 NPs significantly reduced stem and root length compared to control treatments. Additionally, changes were observed in the FTIR-ATR spectra signals, mainly in the root spectra at 30 and 90 DAS. Significant differences were observed in the different plant structures regarding Ti, Zn, and Fe absorption and accumulation. A higher accumulation of Ti was observed in the roots at 90 DAS. Moreover, plants had a higher accumulation of Zn and Fe in leaves, stems, and roots when grown in soil amended with ZnO or Fe 2 O 3 NPs, respectively, at 30 and 90 DAS. In the microstructural analysis of tissue showed no evidence of absorption or translocation of NPs. Therefore, the accumulation of ionic forms of Ti, Zn, and Fe in the plant can be explained by the dissociation and dissolution of the NPs in the rhizosphere, facilitating their adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.