Inhibition of class IIa histone deacetylase (HDAC) enzymes have been suggested as a therapeutic strategy for a number of diseases, including Huntington's disease. Catalytic-site small molecule inhibitors of the class IIa HDAC4, -5, -7, and -9 were developed. These trisubstituted diarylcyclopropanehydroxamic acids were designed to exploit a lower pocket that is characteristic for the class IIa HDACs, not present in other HDAC classes. Selected inhibitors were cocrystallized with the catalytic domain of human HDAC4. We describe the first HDAC4 catalytic domain crystal structure in a "closed-loop" form, which in our view represents the biologically relevant conformation. We have demonstrated that these molecules can differentiate class IIa HDACs from class I and class IIb subtypes. They exhibited pharmacokinetic properties that should enable the assessment of their therapeutic benefit in both peripheral and CNS disorders. These selective inhibitors provide a means for evaluating potential efficacy in preclinical models in vivo.
Potent and selective class IIa HDAC tetrasubstituted cyclopropane hydroxamic acid inhibitors were identified with high oral bioavailability that exhibited good brain and muscle exposure. Compound 14 displayed suitable properties for assessment of the impact of class IIa HDAC catalytic site inhibition in preclinical disease models.KEYWORDS: Class IIa HDAC inhibitors, hydroxamic acid, CNS exposure, tetrasubstituted cyclopropane, cyclopropanation, Huntington's disease I nhibition of class IIa HDAC enzymes has been suggested as a therapeutic strategy for a number of indications, including Huntington's disease (HD) and muscular atrophy. Class IIa HDACs are large proteins with multiple functions including transcription factor binding and N-acetyl lysine recognition. 1,2 Of most interest to our laboratory is the role of class IIa HDAC biology in HD, in particular the beneficial effect, which has been observed following HDAC4 genetic suppression. 3−5 Replication of these effects in preclinical models of HD via occupancy of the class IIa HDAC catalytic domain would provide a rationale for small molecule therapy. Currently there are no marketed HDAC class IIa-selective inhibitors, whereas four pan-HDAC inhibitors, vorinostat (SAHA), romidepsin, belinostat, and panobinostat are on the market.Class IIa-selective HDAC inhibitors would represent important tools for elucidating the therapeutic potential of this protein family. We recently reported the structure-based design of trisubstituted cyclopropane class IIa-selective HDAC inhibitors as potential therapeutics in HD. 6 This improved selectivity was driven by exploiting a selectivity pocket ( Figure 1, shown with compound 13) that is not present in the class I HDAC isoforms. This pocket is formed as a consequence of a tyrosine-histidine substitution. 7 We now report the discovery of tetrasubstituted cyclopropane hydroxamic acid class IIa HDAC inhibitors, with additional substitution at C1 (Figure 1). These compounds exhibited improved pharmacokinetic profiles, and so may provide a further means for evaluating efficacy in preclinical in vivo HD disease models.
A number of artificial carriers for the transport of zwitterionic aromatic amino acids across bulk model membranes (U-tube type) have been prepared and evaluated. 1,2-Dichloroethane and dichloromethane were employed in the organic phase. All compounds are based on a bicyclic chiral guanidinium scaffold that ideally complements the carboxylate function. The guanidinium central moiety was attached to crown ethers or lasalocid A as specific subunits for ammonium recognition as well as to aromatic or hydrophobic residues to evaluate their potential interaction with the side chains of the guest amino acids. The subunits were linked to the guanidinium through ester or amide connectors. Amides were found to be better carriers than esters, though less enantioselective. On the other hand, crown ethers were superior to lasalocid derivatives. As expected, transport rates were dependent on the carrier concentration in the liquid membrane. Reciprocally, enantioselectivities were much higher at lower carrier concentrations. The results show that our previously proposed three-point binding model (J. Am. Chem. Soc. 1992, 114, 1511-1512), involving the participation of the aromatic or hydrophobic residue to interact with the side chains of the amino acid guest, is unnecessary to explain the high enantioselectivities observed. Molecular dynamics fully support a two-point model involving only the guanidinium and crown ether moieties. These molecules constitute the first examples of chiral selectors for underivatized amino acids acting as carriers under neutral conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.