Designing persuasive content is challenging, in part because people can be poor predictors of their actions. Medial prefrontal cortex (MPFC) activation during message exposure reliably predicts downstream behavior, but past work has been largely atheoretical. We replicated past results on this relationship and tested two additional framing effects known to alter message receptivity. First, we examined gain- vs. loss-framed reasons for a health behavior (sunscreen use). Consistent with predictions from prospect theory, we observed greater MPFC activity to gain- vs. loss-framed messages, and this activity was associated with behavior. This relationship was stronger for those who were not previously sunscreen users. Second, building on theories of action planning, we compared neural activity during messages regarding how vs. why to enact the behavior. We observed rostral inferior parietal lobule and posterior inferior frontal gyrus activity during action planning (“how” messages), and this activity was associated with behavior; this is in contrast to the relationship between MPFC activity during the “why” (i.e., gain and loss) messages and behavior. These results reinforce that persuasion occurs in part via self-value integration—seeing value and incorporating persuasive messages into one's self-concept—and extend this work to demonstrate how message framing and action planning may influence this process.
Activity in medial prefrontal cortex (mPFC) during persuasive messages predicts future message-consistent behavior change, but there are significant limitations to the types of persuasion processes that can be invoked inside an MRI scanner. For instance, real world persuasion often involves multiple people in conversation. Functional near infrared spectroscopy (fNIRS) allows us to move out of the scanner and into more ecologically valid contexts. As a first step, the current study used fNIRS to replicate an existing fMRI persuasion paradigm (i.e. the sunscreen paradigm) to determine if mPFC shows similar predictive value with this technology. Consistent with prior fMRI work, activity in mPFC was significantly associated with message-consistent behavior change, above and beyond self-reported intentions. There was also a difference in this association between previous users and non-users of sunscreen. Activity differences based on messages characteristics were not observed. Finally, activity in a region of right dorsolateral PFC (dlPFC), which has been observed with counterarguing against persuasive messages, correlated negatively with future behavior. The current results suggest it is reasonable to use fNIRS to examine persuasion paradigms that go beyond what is possible in the MRI scanner environment.
Adaptive memory requires context-dependent control over how information is retrieved, evaluated and used to guide action, yet the signals that drive adjustments to memory decisions remain unknown. Here we show that prediction errors (PEs) coded by the striatum support control over memory decisions. Human participants completed a recognition memory test that incorporated biased feedback to influence participants' recognition criterion. Using model-based fMRI, we find that PEs—the deviation between the outcome and expected value of a memory decision—correlate with striatal activity and predict individuals' final criterion. Importantly, the striatal PEs are scaled relative to memory strength rather than the expected trial outcome. Follow-up experiments show that the learned recognition criterion transfers to free recall, and targeting biased feedback to experimentally manipulate the magnitude of PEs influences criterion consistent with PEs scaled relative to memory strength. This provides convergent evidence that declarative memory decisions can be regulated via striatally mediated reinforcement learning signals.
Both children and adults are more likely to remember information when they have control over their learning environment. Despite many demonstrations of this effect in the literature, it is still unclear how and why people are more likely to remember information that is obtained through their own actions rather than passively received. One possibility is that individuals are biased to remember the outcomes of their choices because doing so may often be beneficial. Having agency, or the ability to exert control, is valuable when individuals can act in an instrumental manner to achieve their goals. Preferentially encoding information encountered in such contexts may confer an advantage when making similar decisions in the future. However, it has not been directly examined whether modulating the value, or utility, of agency affects its mnemonic benefit. Additionally, the developmental trajectory of how the utility of agency affects memory is unclear. The current study examines whether the mnemonic benefit of agency is modulated by the utility of choice and whether this effect varies as a function of age. We tested 96 participants, ages 8 to 25, in a paradigm in which agency and its utility were separately manipulated at encoding. In contrast to previous studies, we did not find that simply having the ability to make a choice enhanced memory. Rather, when the utility of agency varied within the task, we only observed an agency-related memory benefit when the ability to choose had the greatest utility. This pattern was age-invariant, suggesting that this effect on memory is present in middle childhood and persists through adulthood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.