CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses after immunization, we show that the degree of protection against Leishmania major infection in mice is predicted by the frequency of CD4+ T cells simultaneously producing interferon-gamma, interleukin-2 and tumor necrosis factor. Notably, multifunctional effector cells generated by all vaccines tested are unique in their capacity to produce high amounts of interferon-gamma. These data show that the quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.
BackgroundRecent Mycobacterium tuberculosis (M.tb) infection predisposes to tuberculosis disease, the leading global infectious disease killer. We tested safety andefficacy of H4:IC31® vaccination or Bacille Calmette-Guerin (BCG) revaccination for prevention of M.tb infection. MethodsQuantiFERON-TB Gold In-tube (QFT) negative, HIV-uninfected, remotely BCG-vaccinated adolescents were randomized 1:1:1 to placebo, H4:IC31® or BCG revaccination (NCT02075203). Primary outcomes were safety and acquisition of M.tb infection, defined by initial QFT conversion tested 6-monthly over two years. Secondary outcomes were immunogenicity and sustained M.tb infection, defined by sustained QFT conversion without reversion three and six months post-conversion. Statistical significance for efficacy proof-of-concept was set at 1-sided p<0.10.Results990 participants were enrolled. Both vaccines had acceptable safety profiles and were immunogenic. QFT conversion occurred in 134 and sustained conversion in 82 participants. Neither H4:IC31® nor BCG prevented initial QFT conversion, with efficacy point estimates of 9.4% (95% confidence interval: -36.2, 39.7; one-sided p=0.32) and 20.1% (-21.0, 47.2; one-sided p=0.14), respectively. However, BCG did prevent sustained QFT conversion with an efficacy of 45.4% (6.4, 68.1; one-sided p=0.013); H4:IC31® efficacy was 30.5% (-15.8, 58.3; one-sided p=0.08). QFT reversion rate from positive to negative was 46% in BCG, 40% in H4:IC31 and 25% in placebo recipients. ConclusionsThis first proof-of-concept, prevention of M.tb infection trial showed that sustained infection can be prevented by vaccination in a high-transmission setting and confirmed feasibility of this strategy to inform clinical development of new vaccine candidates. Evaluation of BCG revaccination to prevent tuberculosis disease in M.tb- uninfected populations is warranted.
Over the past 50 years, the Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine against tuberculosis (TB) has maintained its position as the world's most widely used vaccine, despite showing highly variable efficacy (0-80%) in different trials. The efficacy of BCG in adults is particularly poor in tropical and subtropical regions. Studies in animal models of TB, supported by data from clinical BCG trials in humans, indicate that this failure is related to pre-existing immune responses to antigens that are common to environmental mycobacteria and Mycobacterium tuberculosis. Here, we discuss the potential mechanisms behind the variation of BCG efficacy and their implications for an improved TB vaccination strategy.
All tuberculosis vaccines currently in clinical trials are designed as prophylactic vaccines based on early expressed antigens. We have developed a multistage vaccination strategy in which the early antigens Ag85B and 6-kDa early secretory antigenic target (ESAT-6) are combined with the latency-associated protein Rv2660c (H56 vaccine). In CB6F1 mice we show that Rv2660c is stably expressed in late stages of infection despite an overall reduced transcription. The H56 vaccine promotes a T cell response against all protein components that is characterized by a high proportion of polyfunctional CD4(+) T cells. In three different pre-exposure mouse models, H56 confers protective immunity characterized by a more efficient containment of late-stage infection than the Ag85B-ESAT6 vaccine (H1) and BCG. In two mouse models of latent tuberculosis, we show that H56 vaccination after exposure is able to control reactivation and significantly lower the bacterial load compared to adjuvant control mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.