One sentence summary:We describe a general liquid-phase method to exfoliate layered compounds to give monoand few-layer flakes in large quantities. TMDs consist of hexagonal layers of metal atoms, M, sandwiched between two layers of chalcogen atoms, X, with stoichiometry MX 2 . While the bonding within these tri-layer sheets is covalent, adjacent sheets stack via van der Waals interactions to form a 3D crystal. TMDs occur in more than 40 different types (2, 3) depending on the combination of chalcogen (S, Se or Te) and transition metal(3). Depending on the co-ordination and oxidation state of the metal atoms, TMDs can be metallic, semi-metallic or semiconducting(2, 3), e.g. WS 2 is a semiconductor while NbSe 2 is a metal(3). In addition, superconductivity(4) and charge density wave effects(5) have been observed in some TMDs. This versatility makes them potentially useful in many areas of electronics.However, like graphene(6), layered materials must be exfoliated to fulfil their full potential. For example, films of exfoliated Bi 2 Te 3 should display enhanced thermoelectric efficiency by suppression of thermal conductivity(7). Exfoliation of 2D topological insulators such as Bi 2 Te 3 and Bi 2 Se 3 would reduce residual bulk conductance, 4 highlighting surface effects. In addition, we can expect changes in electronic properties as the number of layers is reduced e.g. the indirect bandgap of bulk MoS 2 becomes direct in few-layer flakes(8). Although exfoliation can be achieved mechanically on a small scale(9, 10), liquid phase exfoliation methods are required for many applications(11).Critically, a simple liquid exfoliation method would allow the formation of novel hybrid and composite materials. While TMDs can be chemically exfoliated in liquids(12-14), this method is time consuming, extremely sensitive to the environment and incompatible with most solvents.We demonstrate exfoliation of bulk TMD crystals in common solvents to give mono-and few layer nano-sheets. This method is insensitive to air and water and can potentially be scaled up to give large quantities of exfoliated material. In addition, we show that this procedure allows the formation of hybrid films with enhanced properties.We initially sonicated commercial MoS 2 , WS 2 and BN (15, 16) powders in a number of solvents with varying surface tensions. The resultant dispersions were centrifuged and the supernatant decanted (Section S3). Optical absorption spectroscopy showed that the amount of material retained (characterised by / A l C α = , where A/l is the absorbance per length, α is the extinction coefficient and C is the concentration) was maximised for solvents with surface tension close to 40 mJ/m 2 (17, 18) ( Fig. 1A-C). Detailed analysis, within the framework of Hansen solubility parameter theory(19), shows successful solvents to be those with dispersive, polar and H-bonding components of the cohesive energy density within certain well-defined ranges (Section S4, Figs. S2-S3). This can be interpreted to mean that successful solvents are those w...
Despite the use of electrons with wavelengths of just a few picometers, spatial resolution in a transmission electron microscope (TEM) has been limited by spherical aberration to typically around 0.15 nanometer. Individual atomic columns in a crystalline lattice can therefore only be imaged for a few low-order orientations, limiting the range of defects that can be imaged at atomic resolution. The recent development of spherical aberration correctors for transmission electron microscopy allows this limit to be overcome. We present direct images from an aberration-corrected scanning TEM that resolve a lattice in which the atomic columns are separated by less than 0.1 nanometer.
Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include biasvoltage series to probe local electronic structure. Whatever the application, such investigations must begin with the careful alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.