The question of signal-to-noise ratio (SNR) in intensity interferometry has been revisited in recent years, as researchers have realized that various innovations can offer significant improvements in SNR. These innovations include improved signal processing. Two such innovations, the use of positivity and the use of knowledge of the general shape of the object, have been proposed. This paper investigates the potential gains offered by these two approaches using Cramer-Rao lower bounds (CRLBs). The CRLB on the variance of the positivity-constrained maximum likelihood (ML) estimate is at best 1/4 of the variance of the unconstrained estimator. This is compared to the positivity-constrained ML estimator, which delivers a best-case variance reduction of only (1-1/π)/2=34.1%. The gains offered by prior knowledge depend on the quality of such information, as might be expected from optimal weighting of such data with the measured data. Furthermore, biases are induced by the application of constraints, and these biases can eliminate some or all of the advantage of lower variances, as found when considering the total root-mean-square error. A form of CRLB for variance is presented that properly incorporates prior information.
Binary wavefront control in the focal plane (i.e., binary phase-only filtering) for partial compensation of atmospheric turbulence in fiber-coupled free-space laser communication systems is investigated. Numerical results from wave-optics simulations show that in an air-to-air scenario, the combination of binary phase-only filtering and centroid tracking provides mean fiber coupling efficiency close to that resulting from ideal least-squares adaptive optics, but without the requirement for direct wavefront sensing. This result suggests a simpler and less computationally demanding turbulence mitigation system that is more readily applied to tactical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.