CD28-B7 interaction plays a critical costimulatory role in inducing T cell activation, while CTLA-4-B7 interaction provides a negative signal that is essential in immune homeostasis. Transfer of CD45RBhighCD4+ T cells from syngeneic mice induces transmural colon inflammation in SCID recipients. This adoptive transfer model was used to investigate the contribution of B7-CD28/CTLA-4 interactions to the control of intestinal inflammation. CD45RBhighCD4+ cells from CD28−/− mice failed to induce mucosal inflammation in SCID recipients. Administration of anti-B7.1 (but not anti-B7.2) after transfer of wild-type CD45RBhighCD4+ cells also prevented wasting disease with colitis, abrogated leukocyte infiltration, and reduced production of proinflammatory cytokines IL-2 and IFN-γ by lamina propria CD4+ cells. In contrast, anti-CTLA-4 treatment led to deterioration of disease, to more severe inflammation, and to enhanced production of proinflammatory cytokines. Of note, CD25+CD4+ cells from CD28−/− mice similar to those from the wild-type mice were efficient to prevent intestinal mucosal inflammation induced by the wild-type CD45RBhigh cells. The inhibitory functions of these regulatory T cells were effectively blocked by anti-CTLA-4. These data show that the B7-CD28 costimulatory pathway is required for induction of effector T cells and for intestinal mucosal inflammation, while the regulatory T cells function in a CD28-independent way. CTLA-4 signaling plays a key role in maintaining mucosal lymphocyte tolerance, most likely by activating the regulatory T cells.
Natural killer (NK) cell activity is conserved throughout vertebrate development, but characterization of non-mammalian NK-cells has been hampered by the absence of specific mAbs for these cells. Monoclonal antibodies were generated against in vitro IL-2 expanded sorted CD3-CD8alpha+ peripheral blood lymphocytes, previously described to contain chicken NK-cells. Screening of embryonic and adult splenocytes with hybridoma supernatants resulted in five candidate NK markers. Activation of chicken NK-cells with PMA/Ionomycin or with the NK target cell-line LSCC-RP9 resulted in increased expression of CD107 (LAMP-1) and a newly developed flow cytometry based cytotoxicity assay showed that NK-cells were able to kill target cells. Combining NK markers with functional assays indicated that marker positive cells showed NK-cell function. In conclusion, we generated new monoclonal antibodies and developed two functional assays which will enhance our understanding of the role of NK-cells in healthy and diseased chickens.
Objective. Stress proteins, such as members of the heat-shock protein (HSP) family, are up-regulated by cells in inflamed tissue and can be viewed functionally as "biomarkers" for the immune system to monitor inflammation. Exogenous administration of stress proteins has induced immunoregulation in various models of inflammation and has also been shown to be effective in clinical trials in humans. This study was undertaken to test the hypothesis that boosting of endogenous HSP expression can restore effective immunoregulation through T cells specific for stress proteins.Methods. Stress protein expression was manipulated in vivo and in vitro with a food component (carvacrol), and immune recognition of stress proteins was studied.Results. Carvacrol, a major compound in the oil of many Origanum species, had a notable capacity to coinduce cellular Hsp70 expression in vitro and, upon intragastric administration, in Peyer's patches of mice in vivo. As a consequence, carvacrol specifically promoted T cell recognition of endogenous Hsp70, as demonstrated in vitro by the activation of an Hsp70-specific T cell hybridoma and in vivo by amplified T cell responses to Hsp70. Carvacrol administration also increased the number of CD4؉CD25؉FoxP3؉ T cells, systemically in the spleen and locally in the joint, and almost completely suppressed proteoglycan-induced experimental arthritis. Furthermore, protection against arthritis could be transferred with T cells isolated from carvacrol-fed mice.Conclusion. These findings illustrate that a food component can boost protective T cell responses to a self stress protein and down-regulate inflammatory disease, i.e., that the immune system can respond to diet.
The fundamental problem of autoimmune diseases is the failure of the immune system to downregulate its own potentially dangerous cells, which leads to destruction of tissue expressing the relevant autoantigens. Current immunosuppressive therapies offer relief but fail to restore the basic condition of self-tolerance. They do not induce long-term physiological regulation resulting in medication-free disease remissions. Heat shock proteins (HSPs) have shown to possess the capacity of inducing lasting protective immune responses in models of experimental autoimmune diseases. Especially mycobacterial HSP60 and HSP70 were shown to induce disease inhibitory IL-10-producing regulatory T cells in many different models. This in itself may seem enigmatic, since based on earlier studies, HSPs were also coined sometimes as pro-inflammatory damage-associated molecular patterns. First clinical trials with HSPs in rheumatoid arthritis and type I diabetes have also indicated their potential to restore tolerance in autoimmune diseases. Data obtained from the models have suggested three aspects of HSP as being critical for this tolerance promoting potential: 1. evolutionary conservation, 2. most frequent cytosolic/nuclear MHC class II natural ligand source, and 3. upregulation under (inflammatory) stress. The combination of these three aspects, which are each relatively unique for HSP, may provide an explanation for the enigmatic immune tolerance promoting potential of HSP.
Although food allergy has emerged as a major health problem, the mechanisms that are decisive in the development of sensitization to dietary Ag remain largely unknown. CTLA-4 signaling negatively regulates immune activation, and may play a crucial role in preventing induction and/or progression of sensitization to food Ag. To elucidate the role of CTLA-4 signaling in responses to food allergens, a murine model of peanut allergy was used. During oral exposure to peanut protein extract (PPE) together with the mucosal adjuvant cholera toxin (CT), which induces peanut allergy, CTLA-4 ligation was prevented using a CTLA-4 mAb. Additionally, the effect of inhibition of the CTLA-4 pathway on oral exposure to PPE in the absence of CT, which leads to unresponsiveness to peanut Ag, was explored. During sensitization, anti-CTLA-4 treatment considerably enhanced IgE responses to PPE and the peanut allergens, Ara h 1, Ara h 3, and Ara h 6, resulting in elevated mast cell degranulation upon an oral challenge. Remarkably, antagonizing CTLA-4 during exposure to PPE in the absence of CT resulted in significant induction of Th2 cytokines and an elevation in total serum IgE levels, but failed to induce allergen-specific IgE responses and mast cell degranulation upon a PPE challenge. These results indicate that CTLA-4 signaling is not the crucial factor in preventing sensitization to food allergens, but plays a pivotal role in regulating the intensity of a food allergic sensitization response. Furthermore, these data indicate that a profoundly Th2-biased cytokine environment is insufficient to induce allergic responses against dietary Ag.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.