As the incidence of arboviral diseases such as dengue, Zika, chikungunya, and yellow fever increases globally, controlling their primary vector, Aedes aegypti (L.) (Diptera: Culicidae), is of greater importance than ever before. Mosquito control programs rely heavily on effective adult surveillance to ensure methodological efficacy. The Biogents Sentinel (BGS) trap is the gold standard for surveilling adult Aedes mosquitoes and is commonly deployed worldwide, including during modern ‘rear and release’ programs. Despite its extensive use, few studies have directly assessed environmental characteristics that affect BGS trap catches, let alone how these influences change during ‘rear and release’ programs. We assessed male and female Ae. aegypti spatial stability, as well as premises condition and trap location influences on BGS trap catches, as part of Debug Innisfail ‘rear and release’ program in northern Australia. We found similar trends in spatial stability of male and female mosquitoes at both weekly and monthly resolutions. From surveillance in locations where no males were released, reduced catches were found at premises that contained somewhat damaged houses and unscreened properties. In addition, when traps were located in areas that were unsheltered, more than 10 m from commonly used sitting areas or more visually complex catches were also negatively affected. In locations where males were released, we found that traps in treatment sites, relative to control sites, displayed increased catches in heavily shaded premises and were inconsistently influenced by differences in house sets and building materials. Such findings have valuable implications for a range of Ae. aegypti surveillance programs.
Understanding the relationship between plant diversity and diversity at higher trophic levels is important from both conservation and restoration perspectives. Although there is strong evidence for bottom-up maintenance of biodiversity, this is based largely on studies of simplified grassland systems. Recently, studies in the TreeDivNet global network of tree diversity experiments have begun to test whether these findings are generalizable to more complex ecosystems, such as woodlands. We monitored invertebrate community reassembly over 5 yr of experimental woodland restoration at the TreeDivNet Ridgefield site in southwest Australia, testing the effects of woody plant species richness and herb-layer manipulation on invertebrate community structure and ant species composition. From 2010 to 2014, we sampled ground-dwelling invertebrates using pitfall traps in herbicide vs. no-herbicide subplots nested within each of 10 woody plant treatments varying in richness from zero (bare controls) to eight species, which produced a total of 211, 235 invertebrates, including 98, 979 ants belonging to 74 species. In mixed model analyses, the presence of woody plants was an important driver of faunal community reassembly (relative to bare control plots), but faunal responses to woody plant treatment combinations were idiosyncratic and unrelated to woody plant richness across treatments. We also found that a herbicide-induced reduction in herbaceous plant cover and richness had a positive effect on ant richness and caused more rapid convergence of invertebrate community composition toward the composition of a woodland reference site. These findings show that woody plant richness did not have direct positive effects on the diversity and community reassembly trajectories of higher trophic levels in our woodland system. From a management perspective, this suggests that even low-diversity restoration or carbon sequestration plantings can potentially lead to faunal reassembly outcomes that are comparable to more complex re-planting designs.
As Aedes aegypti continues to expand its global distribution, the diseases it vectors (dengue, Zika, chikungunya and yellow fever) are of increasing concern. Modern efforts to control this species include "rear and release" strategies where lab-reared mosquitoes are distributed throughout the landscape to replace or suppress invasive populations. These programs require intensive surveillance efforts to monitor their success, and the Biogents Sentinel (BGS) trap is one of the most effective tools for sampling adult Ae. aegypti. BGS trap catches can be highly variable throughout landscapes, so we investigated the potential impacts of environmental factors on adult Ae. aegypti capture rates during a "rear and release" program in California to better understand the relative contributions of true variability in population density across a landscape and trap context. We recorded male and female Ae. aegypti catches from BGS traps, with and without CO 2 , throughout control sites where no mosquitoes were released and in treatment sites where males infected with Wolbachia were released. BGS trap catches were positively influenced by higher proportions of shade or bushes in the front yard of the premises as well as the presence of potential larval habitats such as subterranean vaults. In contrast, an increase in residential habitat within a 100 m radius of trap locations negatively influenced BGS trap catches. For male Ae. aegypti, increased visual complexity of the trap location positively influenced capture rates, and the presence of yard drains negatively affected catch rates in control sites. Lastly, for BGS traps using CO 2 , higher catch rates were noted from traps placed greater than one meter from walls or fences for both male and female mosquitoes. These results have important implications for surveillance programs of Ae. aegypti throughout the Californian urban environment including adult monitoring during "rear and release" programs.
BACKGROUND Insect growth regulators (IGRs) generally are considered to have safer eco‐toxicological profiles than the more commonly used neurotoxins and metabolic inhibitors, and are extremely effective against several insect groups, including some invasive ant species. However, use of an IGR product in a large‐scale eradication program for a widespread invasive ant (Anoploepis gracilipes; yellow crazy ant) was ineffective. We tested the IGR in question (active ingredient: (S)‐methoprene) on A. gracilipes colonies in a laboratory environment to evaluate efficacy. RESULTS We found that treatment with (S)‐methoprene resulted in lower egg production with subsequently decreased numbers of larvae, pupae, and workers over the 135 days of the experiment. None of the treated colonies died, and the number of worker ants in treated colonies was 36% of that seen in control colonies 135 days post‐treatment. Treated queen egg production was 39% lower than queens in control colonies, but we saw no effect of treatment on the internal physiology of dissected queens. Treatment had no effect on worker activity levels. CONCLUSION Our results show that although (S)‐methoprene treatment reduced production of larvae, pupae and workers in treated colonies, the magnitude of reduction was lower than might be expected considering the responses of other species against which this IGR has been tested. Our findings highlight a need for testing species‐specific responses to IGR‐based insecticides in a controlled environment, before broad‐scale field applications that could result in suboptimal management of the target species. © 2020 Society of Chemical Industry
The genus Calofulcinia comprises several species of small, cryptic mantis, three of which have been described from Australia. The genus is infrequently recorded and is thus very poorly known, and even basic questions of species delimitation and distribution have remained virtually unknown since the descriptions of these taxa. We here redescribe and figure the three known Australian species of Calofulcinia in full and provide a detailed key to Australian species. We record significant range extensions for all three species, and provide the first detailed behavioural and ecological records for the genus. In addition, we group the Australian species into a Robust Group (C. paraoxypila) and a Gracile Group (C. australis and C. oxynota), we detail the occurrence of colour polymorphism within the genus, and finally we discuss the apparent microhabitat specificity of Calofulcinia spp. (mosses and lichens) and their preference for cool, moist environments with reference to our changing climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.