Objectives: We aimed to investigate the efficacy of new subperception stimulation paradigms including 1.2 kHz-highfrequency stimulation (HFS) and advanced-HFS field-shaping algorithm (dorsal horn HFS [DHHFS]) in refractory cases which initially benefited from conventional spinal cord stimulation (SCS) and lost the effect throughout time.Materials and Methods: In the context of a rescue-therapy, patients underwent externalization of the implanted SCS-leads and were tested with multiple combinations of new SCS paradigms. Pain intensity was analyzed using the numeric rating scale (NRS), and data were collected preoperatively and at multiple postoperative follow-ups.Results: Thirty-seven patients underwent externalization of the leads. Mean preoperative NRS-score was 8.1/10 points (SD ± 0.9) for the ON-stimulation period. Patients received a combination of either tonic, burst and 1.2 kHz-HFS, or burst and 1.2 kHz-HFS, DHHFS, or 1.2 kHz-HFS and DHHFS, or 1.2 kHz-HFS alone. The mean postoperative NRS-score after the testingphase was 3.8/10 points (SD ± 2.5), showing a 48.0% mean reduction (p < 0.001). In total, 29 patients reported a significant reduction above 50% in NRS-scores and therefore were reimplanted with new generators that could deliver the new paradigms. Eight patients underwent full SCS-system explantation. The patients who continued with the new paradigms (n = 29) reported mean NRS-scores of 3.5/10 points (SD ± 1.7) 12 months postoperatively, still showing a significant reduction of 43.3% when compared to preoperative scores (p < 0.001). Conclusion:Rescue-therapy with combination of multiple waveforms, including tonic, burst, 1.2 kHz-HFS, and DHHFS, was associated with a significant pain relief in patients with failed conventional SCS. This approach is a safe and efficient and should be considered before explantation of the SCS-system.
The incidence of pathological gambling in Parkinson's patients is significantly greater than in the general population. A correlation has been observed between dopamine agonist medication and the development of pathological gambling. However, scientists conjecture that the affected patients have underlying risk factors. Studies analysing Parkinson's patients have detected that patients who developed pathological gambling are younger, score higher on novelty-seeking tests, are more impulsive and are more likely to have a personal or family history of alcohol addiction. In addition, some genetic variations have been associated with the susceptibility of developing pathological gambling, which include mutations of DRD3, 5-HTTLPR and GRIN2B. Studies focusing on neurofunctional discrepancies between Parkinson's patients with and without pathological gambling have found increased functional activation and dopamine release in regions associated with the mesolimbic reward system. Furthermore, there is also evidence showing increased processing of reward and decreased activation elicited by punishment, suggesting altered learning processes. Furthermore, the role of deep brain stimulation of the nucleus subthalamicus (STN DBS) is controversial. In most Parkinson's patients, pathological gambling resolved after the initiation of the STN DBS, which might be explained by discontinuation or decrease in dopamine agonist medication. However, it has been also shown that some patients are more impulsive while the STN DBS is activated. These differences may depend on the DBS localization in the more limbic or motor part of the STN and their regulative effects on impulsivity. Further research is needed to clarify susceptibility factors for the development of pathological gambling in Parkinson's patients.
Probabilistic tractography in Tourette syndrome (TS) patients have shown an alteration in the connectivity of the primary motor cortex and supplementary motor area with the striatum and thalamus, suggesting an abnormal connectivity of the cortico-striatum-thalamocortical-pathways in TS. Deep brain stimulation (DBS) of the centromedian nucleus–nucleus ventrooralis internus (CM-Voi complex) in the thalamus is an effective treatment for refractory TS patients. We investigated the connectivity of activated fibers from CM-Voi to the motor cortex and its correlation between these projections and their clinical outcome. Seven patients with TS underwent CM-Voi-DBS surgery and were clinically evaluated preoperatively and six months postoperatively. We performed diffusion tensor imaging to display the activated fibers projecting from the CM-Voi to the different motor cortex regions of interest. These analyses showed that the extent of tic reduction during DBS is associated with the degree of stimulation-dependent connectivity between CM-Voi and the motor cortex, and in particular, an increased density of projections to the presupplementary motor area (preSMA). Non-responder patients displayed the largest amount of active fibers projecting into cortical areas other than motor cortex compared to responder patients. These findings support the notion that an abnormal connectivity of thalamocortical pathways underlies TS, and that modulation of these circuits through DBS could restore the function and reduce symptoms.
Self-injurious behavior (SIB) is associated with diverse psychiatric conditions. Sometimes (e.g., in patients with autism spectrum disorder or acquired brain injuries), SIB is the most dominant symptom, severely restricting the psychosocial functioning and quality of life of the patients and inhibiting appropriate patient care. In severe cases, it can lead to permanent physical injuries or even death. Primary therapy consists of medical treatment and if implementable, behavioral therapy. For patients with severe SIB refractory to conventional therapy, neuromodulation can be considered as a last recourse. In scientific literature, several successful lesioning and deep brain stimulation targets have been described that can indicate a common underlying neuronal pathway. The objectives of this study were to evaluate the short- and long-term clinical outcome of patients with severe, therapy refractory SIB who underwent DBS with diverse underlying psychiatric disorders and to correlate these outcomes with the activated connectivity networks. We retrospectively analyzed 10 patients with SIB who underwent DBS surgery with diverse psychiatric conditions including autism spectrum disorder, organic personality disorder after hypoxic or traumatic brain injury or Tourette syndrome. DBS targets were chosen according to the underlying disorder, patients were either stimulated in the nucleus accumbens, amygdala, posterior hypothalamus, medial thalamus or ventrolateral thalamus. Clinical outcome was measured 6 months after surgery and at long-term follow-up after 10 or more years using the Early Rehabilitation Barthel index (ERBI) and time of restraint. Connectivity patterns were analyzed using normative connectome. Based on previous literature the orbitofrontal cortex, superior frontal gyrus, the anterior cingulate cortex, the amygdala and the hippocampus were chosen as regions of interest. This analysis showed a significant improvement in the functionality of the patients with DBS in the short- and long-term follow-up. Good clinical outcome correlated with higher connectivity to the amygdala and hippocampus. These findings may suggest a common pathway, which can be relevant when planning a surgical procedure in patients with SIB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.