In this work, archaeological radiocarbon data gathered from eastern Fennoscandia have been scrutinized to discuss their suitability for studies of population history. The temporal distribution of the archaeological 14C dates has been analyzed against possible research priorities and sample material deterioration. An outstanding “Stone Age” maximum has been observed in practically all the displayed temporal date distributions. The pattern remains the same throughout the history of 14C dating in Finland. Due to sample material differences, equal taphonomic corrections based on 14C-dated volcanic deposits cannot account for all the sample degradation effects; therefore, material-dependent correction procedures are suggested.
The Neolithic Corded Ware Culture (CWC) complex spread across the Baltic Sea region ca. 2900/2800-2300/2000 BCE. Whether this cultural adaptation was driven by migration or diffusion remains widely debated. To gather evidence for contact and movement in the CWC material culture, grog-tempered CWC pots from 24 archaeological sites in southern Baltoscandia (Estonia and the southern regions of Finland and Sweden) were sampled for geochemical and micro-structural analyses. Scanning electron micro-scopy with energy dispersive spectrometry (SEM-EDS) and particle-induced X-ray emission (PIXE) were used for geochemical discrimination of the ceramic fabrics to identify regional CWC pottery-manufacturing traditions and ceramic exchange. Major and minor element concentrations in the ceramic body matrices of 163 individual vessels and grog temper (crushed pottery) present in the ceramic fabrics were measured by SEM-EDS. Furthermore, the high-sensitivity PIXE technique was applied for group confirmation. The combined pot and grog matrix data reveal eight geochemical clusters. At least five geochemical groups appeared to be associated with specific find locations and regional manufacturing traditions. The results indicated complex inter-site and cross-Baltic Sea pottery exchange patterns, which became more defined through the grog data, i.e., the previous generations of pots. The CWC pottery exhibited high technological standards at these latitudes, which, together with the identified exchange patterns and the existing evidence of mobility based on human remains elsewhere in the CWC complex, is indicative of the relocation of skilled potters, possibly through exogamy. An analytical protocol for the geochemical discrimination of grog-tempered pottery, and its challenges and possibilities, is presented. explore the life histories of individuals, and CWC cemeteries in Germany, for instance, have shown a high degree of individual mobility, especially for women (e.g. Sjögren et al., 2016). While these new analyses have provided an understanding of the general processes occurring in Europe at the time, the model is difficult to verify in Finland and Sweden due to the scarcity of well-preserved human CWC remains (Malmström et al., 2015). To reveal details about the regional and local processes that led to the establishment of the Corded Ware culture in southern Baltoscandia, we must combine the analysis of human remains with new ways of examining the material culture.
ABSTRACT. In this contribution, we establish a radiocarbon-based chronology of early ceramic sequences in eastern Fennoscandia utilizing a Bayesian approach. The data consist of 56 individual 14 C dates from charred or fermented food remains (charred crust, food residue) and birch bark tar used to seal cracks in vessels. We present the results of the models, discuss the chronological boundaries obtained, and compare the outcome with contemporary archaeological knowledge of the Subneolithic in eastern Fennoscandia. We also look at the role of charred crust Ô 13 C values as indicators of reservoir effect present in the dates, perform some preliminary correction procedures for the dates, and discuss their effect on the chronologies.
Questions We investigated the changing role of climate, forest fires and human population size in the broad‐scale compositional changes in Holocene vegetation dynamics before and after the onset of farming in Sweden (at 6,000 cal yr BP) and in Finland (at 4,000 cal yr BP). Location Southern and central Sweden, SW and SE Finland. Methods Holocene regional plant abundances were reconstructed using the REVEALS model on selected fossil pollen records from lakes. The relative importance of climate, fires and human population size on changes in vegetation composition was assessed using variation partitioning. Past climate variable was derived from the LOVECLIM climate model. Fire variable was reconstructed from sedimentary charcoal records. Estimated trend in human population size was based on the temporal distribution of archaeological radiocarbon dates. Results Climate explains the highest proportion of variation in vegetation composition during the whole study period in Sweden (10,000–4,000 cal yr BP) and in Finland (10,000–1,000 cal yr BP), and during the pre‐agricultural period. In general, fires explain a relatively low proportion of variation. Human population size has significant effect on vegetation dynamics after the onset of farming and explains the highest variation in vegetation in S Sweden and SW Finland. Conclusions Mesolithic hunter‐gatherer populations did not significantly affect vegetation composition in Fennoscandia, and climate was the main driver of changes at that time. Agricultural communities, however, had greater effect on vegetation dynamics, and the role of human population size became a more important factor during the late Holocene. Our results demonstrate that climate can be considered the main driver of long‐term vegetation dynamics in Fennoscandia. However, in some regions the influence of human population size on Holocene vegetation changes exceeded that of climate and has a longevity dating to the early Neolithic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.