SummaryOncogenic transcription factors such as the leukemic fusion protein RUNX1/ETO, which drives t(8;21) acute myeloid leukemia (AML), constitute cancer-specific but highly challenging therapeutic targets. We used epigenomic profiling data for an RNAi screen to interrogate the transcriptional network maintaining t(8;21) AML. This strategy identified Cyclin D2 (CCND2) as a crucial transmitter of RUNX1/ETO-driven leukemic propagation. RUNX1/ETO cooperates with AP-1 to drive CCND2 expression. Knockdown or pharmacological inhibition of CCND2 by an approved drug significantly impairs leukemic expansion of patient-derived AML cells and engraftment in immunodeficient murine hosts. Our data demonstrate that RUNX1/ETO maintains leukemia by promoting cell cycle progression and identifies G1 CCND-CDK complexes as promising therapeutic targets for treatment of RUNX1/ETO-driven AML.
Stem cell characteristics have been associated with treatment resistance and poor prognosis across many cancer types. The ability to induce and regulate the pathways that sustain these characteristic hallmarks of lethal cancers in a novel in vitro model would greatly enhance our understanding of cancer progression and treatment resistance. In this work, we present such a model, based simply on applying standard pluripotency/embryonic stem cell media alone. Core pluripotency stem cell master regulators (OCT4, SOX2 and NANOG) along with epithelial–mesenchymal transition (EMT) markers (Snail, Slug, vimentin and N-cadherin) were induced in human prostate, breast, lung, bladder, colorectal, and renal cancer cells. RNA sequencing revealed pathways activated by pluripotency inducing culture that were shared across all cancers examined. These pathways highlight a potential core mechanism of treatment resistance. With a focus on prostate cancer, the culture-based induction of core pluripotent stem cell regulators was shown to promote survival in castrate conditions—mimicking first line treatment resistance with hormonal therapies. This acquired phenotype was shown to be mediated through the upregulation of iodothyronine deiodinase DIO2, a critical modulator of the thyroid hormone signalling pathway. Subsequent inhibition of DIO2 was shown to supress expression of prostate specific antigen, the cardinal clinical biomarker of prostate cancer progression and highlighted a novel target for clinical translation in this otherwise fatal disease. This study identifies a new and widely accessible simple preclinical model to recreate and explore underpinning pathways of lethal disease and treatment resistance.
Background:Poly(ADP-ribose) polymerase-1 (PARP) inhibitors (PARPi) exploit tumour-specific defects in homologous recombination DNA repair and continuous dosing is most efficacious. Early clinical trial data with rucaparib suggested that it caused sustained PARP inhibition. Here we investigate the mechanism of this durable inhibition and potential exploitation.Methods:Uptake and retention of rucaparib and persistence of PARP inhibition were determined by radiochemical and immunological assays in human cancer cell lines. The pharmacokinetics and pharmacodynamics of rucaparib were determined in tumour-bearing mice and the efficacy of different schedules of rucaparib was determined in mice bearing homologous recombination DNA repair-defective tumours.Results:Rucaparib accumulation is carrier mediated (Km=8.4±1.2 μM, Vmax=469±22 pmol per 106 cells per 10 min), reaching steady-state levels >10 times higher than the extracellular concentration within 30 min. Rucaparib is retained in cells and inhibits PARP ⩾50% for ⩾72 h days after a 30-min pulse of 400 nM. In Capan-1 tumour-bearing mice rucaparib accumulated and was retained in the tumours, and PARP was inhibited for 7 days following a single dose of 10 mg kg−1 i.p or 150 mg kg−1 p.o. by 70% and 90%, respectively. Weekly dosing of 150 mg kg−1 p.o once a week was as effective as 10 mg kg−1 i.p daily for five days every week for 6 weeks in delaying Capan-1 tumour growth.Conclusions:Rucaparib accumulates and is retained in tumour cells and inhibits PARP for long periods such that weekly schedules have equivalent anticancer activity to daily dosing in a pre-clinical model, suggesting that clinical evaluation of alternative schedules of rucaparib should be considered.
Background: Retinol isotope dilution (RID) is used to determine vitamin A total body stores (TBS) after an oral dose of a vitamin A stable isotope. The generally accepted prediction equation proposed by Olson’s group in 1989 (Furr et al. Am J Clin Nutr 1989;49:713–6) includes factors related to dose absorption and retention, isotope equilibration in plasma compared with stores, catabolism during the mixing period, and the optimal time for measuring plasma isotope enrichment.Objectives: The objectives were 1) to develop a modified RID equation and identify an earlier sampling time for predicting TBS and 2) to improve prediction in individuals as well as groups.Methods: To develop a modified RID equation, we used results of model-based compartmental analysis [the Simulation, Analysis and Modeling software (WinSAAM version 3.0.8; http://www.WinSAAM.org)] of plasma [13C10]retinol kinetic data from 32 previously studied, healthy young adults of European ancestry who had moderate vitamin A intakes and who ingested 2.95 μmol [13C10]retinyl acetate.Results: We examined the time dependence of factors in the prediction equation related to absorption/retention (Fa) and isotope equilibration (S) and determined that 4 or 5 d postdosing was the optimal sampling time. TBS calculated by the equation TBS = Fa x S x (1/SAp), where SAp is plasma retinol specific activity (fraction of dose/μmol), were highly correlated with model-predicted TBS (r = 0.95 and 0.96 for 4 and 5 d, respectively; P < 0.001); predictions for individuals were also highly correlated (Rs = 0.94 and 0.94; P < 0.001).Conclusion: The equation TBS ≈ 0.5 × (1/SAp) accurately predicted vitamin A TBS in this group of 32 healthy young adults and its individual members with the use of data from 1 blood sample taken 4 d after isotope administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.