Parkinson’s disease (PD) is a common neurodegenerative disorder resulting in a range of mobility deficits affecting gait, balance and turning. In this paper, we present: (i) the development and validation of an algorithm to detect turns during gait; (ii) a method to extract turn characteristics; and (iii) the classification of PD using turn characteristics. Thirty-seven people with PD and 56 controls performed 180-degree turns during an intermittent walking task. Inertial measurement units were attached to the head, neck, lower back and ankles. A turning detection algorithm was developed and validated by two raters using video data. Spatiotemporal and signal-based characteristics were extracted and used for PD classification. There was excellent absolute agreement between the rater and the algorithm for identifying turn start and end (ICC ≥ 0.99). Classification modeling (partial least square discriminant analysis (PLS-DA)) gave the best accuracy of 97.85% when trained on upper body and ankle data. Balanced sensitivity (97%) and specificity (96.43%) were achieved using turning characteristics from the neck, lower back and ankles. Turning characteristics, in particular angular velocity, duration, number of steps, jerk and root mean square distinguished mild-moderate PD from controls accurately and warrant future examination as a marker of mobility impairment and fall risk in PD.
ObjectivesSpinocerebellar ataxia 27 (SCA 27) is a rare heredodegenerative disorder caused by mutations in the fibroblast growth factor 14 (FGF14) and characterized by early-onset tremor and progressive ataxia later during the disease course. We investigated the effect of deep brain stimulation (DBS) of the ventralis intermedius nucleus of the thalamus (VIM) and subthalamic projections on tremor and ataxia.MethodsAt baseline, we studied the effects of high-frequency VIM stimulation and low-frequency stimulation of subthalamic projections on tremor and ataxia. The patient then adopted the best individual high-frequency stimulation programme at daytime and either 30 Hz-stimulation of the subthalamic contacts or StimOFF at night during two separate 5-weeks follow-up intervals. Both patient and rater were blinded to the stimulation settings.ResultsHigh-frequency stimulation of the VIM effectively attenuated tremor. At follow-up, intermittent 30 Hz-stimulation at night resulted in a superior tremor response compared to StimOFF at night. Ataxia was not affected.DiscussionStimulation of the VIM and adjacent subthalamic projections effectively attenuated tremor in a patient with confirmed SCA 27. Cycling between daytime high-frequency and night-time low-frequency stimulation led to a more sustained tremor response. This suggests to study in future if low-frequency stimulation of the subthalamic projection fibers may help overcome tolerance of tremor that is observed as a long-term limitation of VIM-DBS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.