Transport through the nuclear pore complex (NPC) involves a large channel and an abundance of binding sites for nuclear transport receptors (NTRs). However, the mechanistically important distribution of NTRbinding sites along the channel is vividly debated. In this study, we visualized binding site distributions directly by two complementary optical super-resolution methods, single-molecule microscopy and 4Pi microscopy. First, we analyzed the distribution of RanGDP because this important nuclear transport substrate has two types of binding sites at the NPC, direct and indirect, NTRmediated sites. We found that the direct binding sites had a maximum at approximately −30 nm with regard to the NPC center, whereas the indirect transport-relevant binding sites peaked at approximately −10 nm. The 20 nm-shift could be only resolved by 4Pi microscopy because of a two to threefold improved localization precision as compared with single-molecule microscopy. Then we analyzed the distribution of the NTR Kapβ1 and a Kapβ1-based transport complex and found them to have also binding maxima at approximately −10 nm. These observations support transport models in which NTR binding sites are distributed all along the transport channel and argue against models in which the cytoplasmic entrance of the channel is surrounded by a large cloud of binding sites.
IMRT planning based on 4D-PET-CT/4D-CT together with online cone-beam CT is advisable to individualize the PTV margin and optimize target coverage in gastric lymphoma.
Compared to 3D-CRT, IMRT showed significantly better results regarding dose conformity (p = 0.012) and bowel sparing at dose levels above 30 Gy (p = 0.012). Thus, dose escalation in the radiotherapy of pelvic Ewing's sarcoma can be more easily achieved using IMRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.