Three different pi-conjugated oligomers (a blue-emitting oligofluorene, a green-emitting oligo(phenylene vinylene), and a red-emitting perylene bisimide) have been functionalized with self-complementary quadruple hydrogen bonding ureidopyrimidinone (UPy) units at both ends. The molecules self-assemble in solution and in the bulk, forming supramolecular polymers. When mixed together in solution, random noncovalent copolymers are formed that contain all three types of chromophores, resulting in energy transfer upon excitation of the oligofluorene energy donor. At a certain mixing ratio, a white emissive supramolecular polymer can be created in solution. In contrast to their unfunctionalized counterparts, bis-UPy-chromophores can easily be deposited as smooth thin films on surfaces by spin coating. No phase separation is observed in these films, and energy transfer is much more efficient than in solution, giving rise to white fluorescence at much lower ratios of energy acceptor to donor. Light emitting diodes based on these supramolecular polymers have been prepared from all three types of pure materials, yielding blue, green, and red devices, respectively. At appropriate mixing ratios of these three compounds, white electroluminescence is observed. This approach yields a toolbox of molecules that can be easily used to construct pi-conjugated supramolecular polymers with a variety of compositions, high solution viscosities, and tuneable emission colors.
The rapid growth of wearables has created a demand for lightweight, elastic and conformal energy harvesting and storage devices. The conducting polymer poly(3,4-ethylenedioxythiophene) has shown great promise for thermoelectric generators, however, the thick layers of pristine poly(3,4-ethylenedioxythiophene) required for effective energy harvesting are too hard and brittle for seamless integration into wearables. Poly(3,4-ethylenedioxythiophene)elastomer composites have been developed to improve its mechanical properties, although so far without simultaneously achieving softness, high electrical conductivity, and stretchability. Here we report an aqueously processed poly(3,4-ethylenedioxythiophene)-polyurethane-ionic liquid composite, which combines high conductivity (>140 S cm −1) with superior stretchability (>600%), elasticity, and low Young's modulus (<7 MPa). The outstanding performance of this organic nanocomposite is the result of favorable percolation networks on the nano-and microscale and the plasticizing effect of the ionic liquid. The elastic thermoelectric material is implemented in the first reported intrinsically stretchable organic thermoelectric module.
Self‐organized semiconducting structures can be generated by including conjugated chains in block copolymers, it is reported here. Thin films of rod–coil copolymers containing a conjugated and a non‐conjugated segment show nanoribbons of the conjugated material (see Figure), indicating that this approach may open the door to an easy method for nanowire fabrication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.