Progress in superconducting bulk materials has been somewhat overshadowed by the considerable effort required to produce practical long-length conductors. There has, however, been steady progress in both the materials science of bulk superconducting materials and the technologies required to use them effectively in engineering applications. In particular, magnetised bulk superconductors are capable of acting as quasi-permanent magnets with the potential of providing magnetic fields of several tesla or greater from a small volume of material, they can act as magnetic shields and they can provide self-stabilised levitation. This roadmap, based on a workshop which involved the participation of a wide range of academic and industrial participants (see doi: 10.17863/CAM.586 for details of the workshop methodology), aims to explore some of the key potential domains of application of bulk superconductors. Detailed technological roadmaps are presented for four key applications that were identified as providing both good market opportunity and feasibility. These are: portable systems for bulk superconductivity; portable, high-field magnet systems for medical devices; ultra-light superconducting rotating machines for next-generation transport & power applications; and magnetic shielding applications for electric machines, equipment and other high-field devices.
We have experimentally studied the magnetic shielding properties of a cylindrical shell of BiPbSrCaCuO subjected to low frequency AC axial magnetic fields. The magnetic response has been investigated as a function of the dimensions of the tube, the magnitude of the applied field and the frequency. These results are explained quantitatively by employing the method of Brandt (1998 Phys. Rev. B 58 6506) with a Jc(B) law appropriate for a polycrystalline material. Specifically, we observe that the applied field can sweep into the central region either through the thickness of the shield or through the opening ends, the latter mechanism being suppressed for long tubes. For the first time, we systematically detail the spatial variation of the shielding factor (the ratio of the applied field over the internal magnetic field) along the axis of a high-temperature superconducting tube. The shielding factor is shown to be constant in a region around the centre of the tube, and to decrease as an exponential in the vicinity of the ends. This spatial dependence comes from the competition between two mechanisms of field penetration. The frequency dependence of the shielding factor is also discussed and shown to follow a power law arising from the finite creep exponent n.
Crossed-magnetic-field effects on bulk high-temperature superconductors have been studied both experimentally and numerically. The sample geometry investigated involves finite-size effects along both ͑crossed-͒ magnetic-field directions. The experiments were carried out on bulk melt-processed Y-Ba-Cu-O single domains that had been premagnetized with the applied field parallel to their shortest direction ͑i.e., the c axis͒ and then subjected to several cycles of the application of a transverse magnetic field parallel to the sample ab plane. The magnetic properties were measured using orthogonal pickup coils, a Hall probe placed against the sample surface, and magneto-optical imaging. We show that all principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law and in which the current density flows perpendicularly to the plane within which the two components of magnetic field are varied. The results of this study suggest that the suppression of the magnetic moment under the action of a transverse field can be predicted successfully by ignoring the existence of flux-free configurations or flux-cutting effects. These investigations show that the observed decay in magnetization results from the intricate modification of current distribution within the sample cross section. The current amplitude is altered significantly only if a field-dependent critical current density J c ͑B͒ is assumed. Our model is shown to be quite appropriate to describe the cross-flow effects in bulk superconductors. It is also shown that this model does not predict any saturation of the magnetic induction, even after a large number ͑ϳ100͒ of transverse field cycles. These features are shown to be consistent with the experimental data.
MgB 2 in bulk form shows great promise as trapped field magnets (TFMs) as an alternative to bulk (RE)BCO materials to replace permanent magnets in applications such as rotating machines, magnetic bearings and magnetic separation, and the relative ease of fabrication of MgB 2 materials has enabled a number of different processing techniques to be developed. In this paper, a comparison is made between bulk MgB 2 samples fabricated by the Hot Isostatic Pressing (HIP), with and without Ti-doping, and Infiltration Growth (IG) methods and the highest trapped field in an IG-processed bulk MgB 2 sample, B z = 2.12 at 5 K and 1.66 T at 15 K, is reported. Since bulk MgB 2 has a more homogeneous J c distribution than (RE)BCO bulks, studies on such systems are made somewhat easier because simplified assumptions regarding the geometry and J c distribution can be made, and a numerical simulation technique based on the 2D axisymmetric H-formulation is introduced to model the complete process of field cooling (FC) magnetization. As input data for the model, the measured J c (B,T) characteristics of a single, small specimen taken from each bulk sample are used, in addition to measured specific heat and thermal conductivity data for the materials. The results of the simulation reproduce the experimental results extremely well: (1) indicating the samples have excellent homogeneity, and (2) validating the numerical model as a fast, accurate and powerful tool to investigate the trapped field profile of bulk MgB 2 discs of any size accurately, under any specific operating conditions. Finally, the paper is concluded with a numerical analysis of the influence of the dimensions of the bulk sample on the trapped field.
Abstract.We make progress towards a 3D finite-element model for the magnetization of a high temperature superconductor (HTS): We suggest a method that takes into account demagnetisation effects and flux creep, while it neglects the effects associated with currents that are not perpendicular to the local magnetic induction. We consider samples that are subjected to a uniform magnetic field varying linearly with time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.