Severe acute respiratory syndrome novel coronavirus 2 (SARS-CoV-2) has caused the global pandemic as COVID-19, which is the most notorious global public health crisis in the last 100 years. SARS-CoV-2 is composed of four structural proteins and several non-structured proteins. The multi-facet nucleocapsid (N) protein is the major component of structural proteins of CoVs, However, there are no dedicated genomic, sequences and structural analyses focusing on potential roles of N protein. Hence, there is an urgent requirement of a detailed study on N protein of SARS-CoV-2. Herein, we are presenting a comprehensive study on N protein from SARS-CoV-2. We have identified seven motifs conserved in the three major domains namely N-terminal domain, linker regions and the C-terminal domains. Out of seven motifs, six motifs are conserved across different members of coronaviridae, while motif4 is specific for SARS CoVs with potential amyloidogenic properties. Additionally, we report this protein has large patches of disordered regions flanking with these seven motifs. These motifs are hubs of epitopes with 67 experimentally verified epitopes from related viruses. We report the presence of three nuclear localization signals (NLS1-NLS3 mapped to 36-41, 256-26, and 363-389 residues, respectively) and two nuclear export signals (NES1-NLS2 from 151-161 and 217-230 residues, respectively) in the N protein of SARS-CoV-2. These deciphered two Q-patches as Q-patch1 and Q-patch2, mapped in the regions of 266-306, and 361-418 residues, which potentially help in the aggregation of the viral proteins along with 219LALLLLDR226 patch. Additionally, we have identified 14 antiviral drugs potentially binding to seven motifs of N-proteins using docking-based drug discovery methods.
Purpose
Extracellular matrix remodeling is essential for extravillous trophoblast (EVT) cell migration and invasion during placental development and regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteases (TIMPs). Sphingosine kinases (SPHK1 and SPHK2) synthesize sphingosine‐1‐phosphate (S1P), which works either intracellularly or extracellularly via its receptors S1PR1‐5 in an autocrine or paracrine manner. The role of SPHKs/S1P in regulating the expression of MMPs and TIMPs in EVT is mostly unknown and forms the primary objective of the study.
Methods
HTR‐8/SVneo cells were used as a model of EVT. To inhibit the expression of SPHKs, cells were treated with specific inhibitors, SK1‐I and SKI‐II, or gene‐specific siRNAs. The expressions of MMPs and TIMPs were estimated by qPCR.
Results
We demonstrated that SPHK1, MMP1‐3, and TIMP1‐3 were highly expressed in HTR‐8/SVneo cells. We found that treatment of cells with SK1‐I, SKI‐II, and knockdown of SPHK1 or SPHK2 increased the expression of MMP1, MMP3, and TIMP3. The addition of extracellular S1P inhibits the upregulation of MMPs and TIMPs in treated cells.
Conclusions
SPHKs negatively regulate the expression of MMP1, MMP3, and TIMP3. The level of intracellular S1P acts as a negative feedback switch for MMP1, MMP3, and TIMP3 expression in EVT cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.