Background: Endogenously produced glucocorticoids exhibit immunomodulating properties and are of pivotal importance for sepsis outcome. Uncontrolled activation of the immune-adrenal crosstalk increases the risk of sepsis-related death. Triggering receptor expressed on myeloid cells-2 (TREM2) is richly expressed on macrophages and has been demonstrated to improve outcome of sepsis by enhancing elimination of pathogens. However, the role and mode of action of macrophage TREM2 on adrenocortical steroidogenesis remains unclear in septic shock.Methods: The acute septic shock model was established by intraperitoneally challenging wild-type (WT) and TREM2 knock-out (Trem2-/-) mice with lipopolysaccharide (30 mg/kg). The mice were assessed for TREM2 expression and local inflammation in adrenal gland and synthesis of corticotropin releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) in vivo. Bone marrow-derived macrophages or macrophage-derived exosomes were isolated from WT and Trem2-/- mice and co-cultured with adrenocortical cells. The expression of steroidogenic enzymes and corticosterone production were assessed.Results: Genetic deficiency of TREM2 caused significantly higher corticosterone levels (326.6 ± 73.0 ng/ml in Trem2-/- mice vs. 151.1 ± 58.9 ng/ml in WT mice; p < 0.001) at the early stage of LPS-induced septic shock. While TREM2 deficiency neither increased CRH and ACTH, nor exacerbated the inflammation in adrenocortical tissue during septic shock. Ex vivo study revealed that Trem2-/- macrophages significantly promoted the expression of steroidogenic enzymes and increased production of corticosterone (27.73 ± 1.78 ng/ml in Trem2-/- mice vs. 22.96 ± 1.94 ng/ml in W T mice; p < 0.01). Furthermore, Trem2-/- macrophage-derived exosomes were able to mimic Trem2-/- macrophages in enhancing adrenocortical steroidogenesis. Conclusions: At the early stage of lipopolysaccharide-induced septic shock, macrophage TREM2 inhibited the steroid synthesis and corticosterone production in adrenocortical cells, which may be partially associated with macrophage-derived exosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.