The paper considers the forecasting of the Warsaw Stock Exchange price index WIG20 by applying a state space wavelet network model of the index price. The approach can be applied to the development of tools for predicting changes of other economic indicators, especially stock exchange indices. The paper presents a general state space wavelet network model and the underlying principles. The model is applied to produce one session ahead and five sessions ahead adaptive predictors of the WIG20 index prices. The predictors are validated based on real data records to produce promising results. The state space wavelet network model may also be used as a forecasting tool for a wide range of economic and non-economic indicators, such as goods and row materials prices, electricity/fuel consumption or currency exchange rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.