BACKGROUND Brentuximab vedotin is an anti-CD30 antibody–drug conjugate that has been approved for relapsed and refractory Hodgkin’s lymphoma. METHODS We conducted an open-label, multicenter, randomized phase 3 trial involving patients with previously untreated stage III or IV classic Hodgkin’s lymphoma, in which 664 were assigned to receive brentuximab vedotin, doxorubicin, vinblastine, and dacarbazine (A+AVD) and 670 were assigned to receive doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD). The primary end point was modified progression-free survival (the time to progression, death, or noncomplete response and use of subsequent anticancer therapy) as adjudicated by an independent review committee. The key secondary end point was overall survival. RESULTS At a median follow-up of 24.9 months, 2-year modified progression-free survival rates in the A+AVD and ABVD groups were 82.1% (95% confidence interval [CI], 78.7 to 85.0) and 77.2% (95% CI, 73.7 to 80.4), respectively, a difference of 4.9 percentage points (hazard ratio for an event of progression, death, or modified progression, 0.77; 95% CI, 0.60 to 0.98; P = 0.03). There were 28 deaths with A+AVD and 39 with ABVD (hazard ratio for interim overall survival, 0.72 [95% CI, 0.44 to 1.17]; P = 0.19). All secondary efficacy end points trended in favor of A+AVD. Neutropenia occurred in 58% of the patients receiving A+AVD and in 45% of those receiving ABVD; in the A+AVD group, the rate of febrile neutropenia was lower among the 83 patients who received primary prophylaxis with granulocyte colony-stimulating factor than among those who did not (11% vs. 21%). Peripheral neuropathy occurred in 67% of patients in the A+AVD group and in 43% of patients in the ABVD group; 67% of patients in the A+AVD group who had peripheral neuropathy had resolution or improvement at the last follow-up visit. Pulmonary toxicity of grade 3 or higher was reported in less than 1% of patients receiving A+AVD and in 3% of those receiving ABVD. Among the deaths that occurred during treatment, 7 of 9 in the A+AVD group were associated with neutropenia and 11 of 13 in the ABVD group were associated with pulmonary-related toxicity. CONCLUSIONS A+AVD had superior efficacy to ABVD in the treatment of patients with advanced-stage Hodgkin’s lymphoma, with a 4.9 percentage-point lower combined risk of progression, death, or noncomplete response and use of subsequent anticancer therapy at 2 years. (Funded by Millennium Pharmaceuticals and Seattle Genetics; ECHELON-1 ClinicalTrials.gov number, NCT01712490; EudraCT number, 2011-005450-60.)
Background The fluorochrome‐labeled inhibitors of caspases (FLICA) were recently used as markers of activation of these enzymes in live cells during apoptosis (Bedner et al.: Exp Cell Res 259:308–313, 2000). The aims of this study were to (a) explore if FLICA can be used to study intracellular localization of caspases; (b) combine the detection of caspase activation with analysis of the changes with cell morphology detected by microscopy and laser scanning cytometry (LSC); and (c) adapt the assay to fixed cells that would enable correlation, by multiparameter analysis, of caspase activation with the cell attributes that require cell permeabilization in order to be measured. Methods Apoptosis of human MCF‐7, U‐937, or HL‐60 cells was induced by camptothecin (CPT) or tumor necrosis factor‐α (TNF‐α) combined with cycloheximide (CHX). Binding of FLICA to apoptotic versus nonapoptotic cells was studied in live cells as well as following their fixation and counterstaining of DNA. Intensity of cell labeling with FLICA and DNA‐specific fluorochromes was measured by LSC. Results Exposure of live cells to FLICA led to selective labeling of cells that had morphological changes characteristic of apoptosis. The FLICA labeling withstood cell fixation and permeabilization, which made it possible to stain DNA and measure its content for identification of the cell cycle position of labeled cells. When fixed cells were treated with FLICA, both apoptotic and nonapoptotic cells became strongly labeled and the labeling pattern was consistent with the localization of caspases as reported in the literature. A translocation of the FLICA binding targets from mitochondria to cytosol was seen in the MCF‐7 cells treated with CPT. FLICA binding was largely (>90%) prevented by the substrates of the caspases or by the unlabeled caspase inhibitors having the same peptide moiety as the respective FLICA. Conclusions The detection of caspase activation combined with cell permeabilization requires exposure of live cells to FLICA followed by their fixation. Cell reactivity with the respective FLICA, under these conditions, identifies the activated caspases and makes it possible to correlate their activation with the cell cycle position and other cell attributes that can be measured only after cell fixation/permeabilization. FLICA can also be used to study intracellular localization of caspases, including their translocation. Cytometry 44:73–82, 2001. © 2001 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.