Amplitude modulations in the speech convey important acoustic information for speech perception. Auditory steady state response (ASSR) is thought to be physiological correlate of amplitude modulation perception. Limited research is available exploring association between ASSR and modulation detection ability as well as speech perception. Correlation of modulation detection thresholds (MDT) and speech perception in noise with ASSR was investigated in twofold experiments. 30 normal hearing individuals and 11 normal hearing individuals within age range of 18–24 years participated in experiments 1 and 2, respectively. MDTs were measured using ASSR and behavioral method at 60 Hz, 80 Hz, and 120 Hz modulation frequencies in the first experiment. ASSR threshold was obtained by estimating the minimum modulation depth required to elicit ASSR (ASSR-MDT). There was a positive correlation between behavioral MDT and ASSR-MDT at all modulation frequencies. In the second experiment, ASSR for amplitude modulation (AM) sweeps at four different frequency ranges (30–40 Hz, 40–50 Hz, 50–60 Hz, and 60–70 Hz) was recorded. Speech recognition threshold in noise (SRTn) was estimated using staircase procedure. There was a positive correlation between amplitude of ASSR for AM sweep with frequency range of 30–40 Hz and SRTn. Results of the current study suggest that ASSR provides substantial information about temporal modulation and speech perception.
This experiment investigated the mechanisms of temporal fine structure (TFS) mediated speech recognition in multi-talker babble. The signal-to-noise ratio 50 (SNR-50) for naive-listeners was measured when the TFS was retained in its original form (ORIG-TFS), the TFS was time reversed (REV-TFS), and the TFS was replaced by noise (NO-TFS). The original envelope was unchanged. In the REV-TFS condition, periodicity cues for stream segregation were preserved, but envelope recovery was compromised. Both the mechanisms were compromised in the NO-TFS condition. The SNR-50 was lowest for ORIG-TFS followed by REV-TFS, which was lower than NO-TFS. Results suggest both stream segregation and envelope recovery aided TFS mediated speech recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.